
1 | P a g e

LECTURE NOTES

TITLE OF THE COURSE: PROGRAMMING IN ASP.NET

PAPER CODE: 18PCS10

COMPILED BY

DR. S.HARI GANESH

DEPARTMENT OF COMPUTER SCIENCE

HH THE RAJAH’S COLLEGE, PUDUKOTTAI

**** UNIT-I ****

 ASP.NET is Microsoft corporation's propitiatory frontend language. It means "Active

Server Pages". In the name itself, it's saying I'm active. The ASP code will run in the client

machine and used to represent the data which is returning from the server.

ASP.NET is a web development platform, which provides a programming model, a

comprehensive software infrastructure and various services required to build up robust web

applications for PC, as well as mobile devices.

ASP.NET works on top of the HTTP protocol, and uses the HTTP commands and policies to set

a browser-to-server bilateral communication and cooperation.

ASP.NET is a part of Microsoft .Net platform. ASP.NET applications are compiled codes,

written using the extensible and reusable components or objects present in .Net framework.

These codes can use the entire hierarchy of classes in .Net framework.

The ASP.NET application codes can be written in any of the following languages:

 C#

 Visual Basic.Net

 Jscript

 J#

ASP.NET is used to produce interactive, data-driven web applications over the internet. It

consists of a large number of controls such as text boxes, buttons, and labels for assembling,

configuring, and manipulating code to create HTML pages.

FAQ: WHAT IS

ASP.NET?

2 | P a g e

ASP.NET Architecture and its Components

ASP.Net is a framework which is used to develop a Web-based application. The basic

architecture of the ASP.Net framework is as shown below.

ASP.NET Architecture Diagram

The architecture of the.Net framework is based on the following key components

1. Language – A variety of languages exists for .net framework. They are VB.net and C#.

These can be used to develop web applications.

2. Library - The .NET Framework includes a set of standard class libraries. The most

common library used for web applications in .net is the Web library. The web library has

all the necessary components used to develop.Net web-based applications.

3. Common Language Runtime - The Common Language Infrastructure or CLI is a

platform. .Net programs are executed on this platform. The CLR is used for performing

key activities. Activities include Exception handling and Garbage collection.

FAQ: EXPLAIN THE FRAME WORK

ARCHTECTTURE OF ASP.NET?

https://www.guru99.com/images/asp-net/061516_0807_ASPNetIntro1.png

3 | P a g e

ASP.NET FRAME WORK

4 | P a g e

5 | P a g e

6 | P a g e

ASP.NET life cycle specifies, how:

 ASP.NET processes pages to produce dynamic output

 The application and its pages are instantiated and processed

 ASP.NET compiles the pages dynamically

The ASP.NET life cycle could be divided into two groups:

 Application Life Cycle

 Page Life Cycle

ASP.NET Application Life Cycle

FAQ: LIST THE DIFFERENT

TYPES FILES IN ASP.NET

7 | P a g e

The application life cycle has the following stages:

 User makes a request for accessing application resource, a page. Browser sends this

request to the web server.

 A unified pipeline receives the first request and the following events take place:

o An object of the class ApplicationManager is created.

o An object of the class HostingEnvironment is created to provide information

regarding the resources.

o Top level items in the application are compiled.

 Response objects are created. The application objects such as HttpContext, HttpRequest

and HttpResponse are created and initialized.

 An instance of the HttpApplication object is created and assigned to the request.

 The request is processed by the HttpApplication class. Different events are raised by this

class for processing the request.

ASP.NET Page Life Cycle

When a page is requested, it is loaded into the server memory, processed, and sent to the

browser. Then it is unloaded from the memory. At each of these steps, methods and events are

available, which could be overridden according to the need of the application. In other words,

you can write your own code to override the default code.

The Page class creates a hierarchical tree of all the controls on the page. All the components on

the page, except the directives, are part of this control tree. You can see the control tree by

adding trace= "true" to the page directive. We will cover page directives and tracing under

'directives' and 'event handling'.

The page life cycle phases are:

 Initialization

 Instantiation of the controls on the page

 Restoration and maintenance of the state

 Execution of the event handler codes

 Page rendering

Understanding the page cycle helps in writing codes for making some specific thing happen at

any stage of the page life cycle. It also helps in writing custom controls and initializing them at

right time, populate their properties with view-state data and run control behavior code.

Following are the different stages of an ASP.NET page:

FAQ: DESCIRBE THE PAGE LIFE CYCLE

OF ASP.NET

8 | P a g e

 Page request - When ASP.NET gets a page request, it decides whether to parse and

compile the page, or there would be a cached version of the page; accordingly the

response is sent.

 Starting of page life cycle - At this stage, the Request and Response objects are set. If

the request is an old request or post back, the IsPostBack property of the page is set to

true. The UICulture property of the page is also set.

 Page initialization - At this stage, the controls on the page are assigned unique ID by

setting the UniqueID property and the themes are applied. For a new request, postback

data is loaded and the control properties are restored to the view-state values.

 Page load - At this stage, control properties are set using the view state and control state

values.

 Validation - Validate method of the validation control is called and on its successful

execution, the IsValid property of the page is set to true.

 Postback event handling - If the request is a postback (old request), the related event

handler is invoked.

 Page rendering - At this stage, view state for the page and all controls are saved. The

page calls the Render method for each control and the output of rendering is written to

the OutputStream class of the Response property of page.

 Unload - The rendered page is sent to the client and page properties, such as Response

and Request, are unloaded and all cleanup done.

ASP.NET Page Life Cycle Events

At each stage of the page life cycle, the page raises some events, which could be coded. An

event handler is basically a function or subroutine, bound to the event, using declarative

attributes such as Onclick or handle.

Following are the page life cycle events:

 PreInit - PreInit is the first event in page life cycle. It checks the IsPostBack property

and determines whether the page is a postback. It sets the themes and master pages,

creates dynamic controls, and gets and sets profile property values. This event can be

handled by overloading the OnPreInit method or creating a Page_PreInit handler.

 Init - Init event initializes the control property and the control tree is built. This event

can be handled by overloading the OnInit method or creating a Page_Init handler.

 InitComplete - InitComplete event allows tracking of view state. All the controls turn on

view-state tracking.

9 | P a g e

 LoadViewState - LoadViewState event allows loading view state information into the

controls.

 LoadPostData - During this phase, the contents of all the input fields are defined with

the <form> tag are processed.

 PreLoad - PreLoad occurs before the post back data is loaded in the controls. This event

can be handled by overloading the OnPreLoad method or creating a Page_PreLoad

handler.

 Load - The Load event is raised for the page first and then recursively for all child

controls. The controls in the control tree are created. This event can be handled by

overloading the OnLoad method or creating a Page_Load handler.

 LoadComplete - The loading process is completed, control event handlers are run, and

page validation takes place. This event can be handled by overloading the

OnLoadComplete method or creating a Page_LoadComplete handler

 PreRender - The PreRender event occurs just before the output is rendered. By handling

this event, pages and controls can perform any updates before the output is rendered.

 PreRenderComplete - As the PreRender event is recursively fired for all child controls,

this event ensures the completion of the pre-rendering phase.

 SaveStateComplete - State of control on the page is saved. Personalization, control state

and view state information is saved. The HTML markup is generated. This stage can be

handled by overriding the Render method or creating a Page_Render handler.

 UnLoad - The UnLoad phase is the last phase of the page life cycle. It raises the UnLoad

event for all controls recursively and lastly for the page itself. Final cleanup is done and

all resources and references, such as database connections, are freed. This event can be

handled by modifying the OnUnLoad method or creating a Page_UnLoad handler.

https://www.tutorialspoint.com/asp.net/asp.net_environment_setup.htm

10 | P a g e

DATA TYPES IN ASP.NET

OBJECTS AND NAME SPACES

FAQ: DISCUSS THE VARIOUS

DATATYPES OF ASP.NET

FAQ: WRITE ABOUT THE

NAMESPACES IN ASP.NET

11 | P a g e

The GridView control displays the values of a data source in a table. Each column represents a

field, while each row represents a record. The GridView control supports the following features:

Binding to data source controls, such as SqlDataSource

CODE BEHIND FILE

12 | P a g e

One major point of Code-Behind is that the code for all the Web pages is compiled into a DLL

file that allows the web pages to be hosted free from any Inline Server Code. Inline

Code. Inline Code refers to the code that is written inside an ASP.NET Web Page that has an

extension of . aspx

In today's article, you will learn the differences between Code-Behind and Inline Code in

ASP.NET.

Many people remain confused about the differences between Code-Behind and Inline Code.

Here I am explaining both of them with examples that will help you to understand the differences

between the two.

Code Behind

Code Behind refers to the code for an ASP.NET Web page that is written in a separate class file

that can have the extension of .aspx.cs or .aspx.vb depending on the language used. Here the

code is compiled into a separate class from which the .aspx file derives. You can write the code

in a separate .cs or .vb code file for each .aspx page. One major point of Code-Behind is that the

code for all the Web pages is compiled into a DLL file that allows the web pages to be hosted

free from any Inline Server Code.

Inline Code

Inline Code refers to the code that is written inside an ASP.NET Web Page that has an extension

of .aspx. It allows the code to be written along with the HTML source code using a <Script> tag.

Its major point is that since it's physically in the .aspx file it's deployed with the Web Form page

whenever the Web Page is deployed.

Now I will show you these differences by using an example.

Step 1

First of all, create a new Blank Website in Visual Studio, then add a Web page to it. Here we are

first creating a Web page for the Code Behind so remember one thing "the check box should

13 | P a g e

be checked while adding this page". In other words, check the "Place the code in a separate

file" and then click on the "Add" button.

Now on the .aspx page use a Button, a Link, and a Text Box.

14 | P a g e

Step 2

Now double-click on the Button, this will use the Code window. Now you will see that

this coding section is opened in a separate window whose extension is .aspx.cs. Write the

code in this window. I wrote the code such that whatever I wrote in the TextBox will also appear

in the Label.

Now debug this page and verify that your program is running.

15 | P a g e

Step 3

Until now we were working on the Code Behind but now we will work on the Inline Code, for

that add another web page to your Web Site. But this time things are different, this time don't

check the check box and if it's checked then Uncheck it and then click on "Add".

Now on this new .aspx page again use a Button, a Link, and a Text Box.

16 | P a g e

Step 4

Now double-click on the Button so that you can write the code on click of this button. But

Now No New Window will be opened; now the coding will appear on the same .aspx

page. Here no .aspx.cs page is available.

Write the same code here also and then debug it.

17 | P a g e

As you can see it's giving the same output as the Code Behind gave but even after that is

different from the Code Behind.

**** END OF UNIT- I ****

18 | P a g e

**** UNIT-II ****

ASP.NET Web Forms

Web Forms are web pages built on the ASP.NET Technology. It executes on the server and

generates output to the browser. It is compatible to any browser to any language supported by

.NET common language runtime. It is flexible and allows us to create and add custom controls.

We can use Visual Studio to create ASP.NET Web Forms. It is an IDE (Integrated Development

Environment) that allows us to drag and drop server controls to the web forms. It also allows us

to set properties, events and methods for the controls. To write business logic, we can choose any

.NET language like: Visual Basic or Visual C#.

Web Forms are made up of two components: the visual portion (the ASPX file), and the code

behind the form, which resides in a separate class file.

 Fig: This diagram shows the components of the ASP.NET

The main purpose of Web Forms is to overcome the limitations of ASP and separate view from

the application logic.

ASP.NET provides various controls like: server controls and HTML controls for the Web

Forms. We have tables all these controls below.

FAQ: EXPLAIN THE WEB

FORMS IN DETAIL

19 | P a g e

Server Controls

The following table contains the server-side controls for the Web Forms.

Control Name Applicable Events Description

Label None It is used to display

text on the HTML

page.

TextBox TextChanged It is used to create a

text input in the

form.

Button Click, Command It is used to create a

button.

LinkButton Click, Command It is used to create a

button that looks

similar to the

hyperlink.

ImageButton Click It is used to create

an imagesButton.

Here, an image

works as a Button.

Hyperlink None It is used to create a

hyperlink control

that responds to a

click event.

DropDownList SelectedIndexChanged It is used to create a

dropdown list

control.

FAQ: DESCRIBE SERVER- SIDE

CONTROLS

20 | P a g e

ListBox SelectedIndexCnhaged It is used to create a

ListBox control like

the HTML control.

DataGrid CancelCommand,

EditCommand,

DeleteCommand,

ItemCommand,

SelectedIndexChanged,

PageIndexChanged,

SortCommand,

UpdateCommand,

ItemCreated,

ItemDataBound

It used to create a

frid that is used to

show data. We can

also perform paging,

sorting, and

formatting very

easily with this

control.

DataList CancelCommand,

EditCommand,

DeleteCommand,

ItemCommand,

SelectedIndexChanged,

UpdateCommand,

ItemCreated,

ItemDataBound

It is used to create

datalist that is non-

tabular and used to

show data.

Repeater ItemCommand,

ItemCreated,

ItemDataBound

It allows us to create

a non-tabular type of

format for data. You

can bind the data to

template items,

which are like bits of

HTML put together

in a specific

repeating format.

CheckBox CheckChanged It is used to create

checkbox.

21 | P a g e

CheckBoxList SelectedIndexChanged It is used to create a

group of check

boxes that all work

together.

RadioButton CheckChanged It is used to create

radio button.

RadioButtonList SelectedIndexChanged It is used to create a

group of radio

button controls that

all work together.

Image None It is used to show

image within the

page.

Panel None It is used to create a

panel that works as a

container.

PlaceHolder None It is used to set

placeholder for the

control.

Calendar SelectionChanged,

VisibleMonthChanged,

DayRender

It is used to create a

calendar. We can set

the default date,

move forward and

backward etc.

AdRotator AdCreated It allows us to

specify a list of ads

to display. Each time

the user re-displays

the page.

22 | P a g e

Table None It is used to create

table.

XML None It is used to display

XML documents

within the HTML.

Literal None It is like a label in

that it displays a

literal, but allows us

to create new literals

at runtime and place

them into this

control.

HTML Controls

These controls render by the browser. We can also make HTML controls as server control. we

will discuss about this in further our tutorial.

Controls

Name

Description

Button It is used to create HTML button.

Reset

Button

Resets all other HTML form elements on a form to a default value

Submit

Button

Automatically POSTs the form data to the specified page listed in the

Action attribute in the FORM tag

FAQ: DISCUSS THE HTML

CONTROLS IN DETAIL

23 | P a g e

Text Field Gives the user an input area on an HTML form

Text Area Used for multi-line input on an HTML form

File Field Places a text field and a Browse button on a form and allows the user to

select a file name from their local machine when the Browse button is

clicked

Password

Field

An input area on an HTML form, although any characters typed into this

field are displayed as asterisks

CheckBox Gives the user a check box that they can select or clear

Radio

Button

Used two or more to a form, and allows the user to choose one of the

controls

Table Allows you to present information in a tabular format

Image Displays an image on an HTML form

ListBox Displays a list of items to the user. You can set the size from two or more

to specify how many items you wish show. If there are more items than will

fit within this limit, a scroll bar is automatically added to this control.

Dropdown Displays a list of items to the user, but only one item at a time will appear.

The user can click a down arrow from the side of this control and a list of

items will be displayed.

Horizontal

Rule

Displays a horizontal line across the HTML page

WEB CONTROLS

ASP.NET uses five types of web controls, which are:

24 | P a g e

 HTML controls

 HTML Server controls

 ASP.NET Server controls

 ASP.NET Ajax Server controls

 User controls and custom controls

ASP.NET server controls are the primary controls used in ASP.NET. These controls can be

grouped into the following categories:

 Validation controls - These are used to validate user input and they work by running

client-side script.

 Data source controls - These controls provides data binding to different data sources.

 Data view controls - These are various lists and tables, which can bind to data from data

sources for displaying.

 Personalization controls - These are used for personalization of a page according to the

user preferences, based on user information.

 Login and security controls - These controls provide user authentication.

 Master pages - These controls provide consistent layout and interface throughout the

application.

 Navigation controls - These controls help in navigation. For example, menus, tree view

etc.

 Rich controls - These controls implement special features. For example, AdRotator,

FileUpload, and Calendar control.

The syntax for using server controls is:

<asp:controlType ID ="ControlID" runat="server" Property1=value1 [Property2=value2] />

In addition, visual studio has the following features, to help produce in error-free coding:

 Dragging and dropping of controls in design view

 IntelliSense feature that displays and auto-completes the properties

 The properties window to set the property values directly

Properties of the Server Controls

ASP.NET server controls with a visual aspect are derived from the WebControl class and

inherit all the properties, events, and methods of this class.

25 | P a g e

The WebControl class itself and some other server controls that are not visually rendered are

derived from the System.Web.UI.Control class. For example, PlaceHolder control or XML

control.

ASP.Net server controls inherit all properties, events, and methods of the WebControl and

System.Web.UI.Control class.

The following table shows the inherited properties, common to all server controls:

Property Description

AccessKey Pressing this key with the Alt key moves focus to the control.

Attributes It is the collection of arbitrary attributes (for rendering only) that do not

correspond to properties on the control.

BackColor Background color.

BindingContainer The control that contains this control's data binding.

BorderColor Border color.

BorderStyle Border style.

BorderWidth Border width.

CausesValidation Indicates if it causes validation.

ChildControlCreated It indicates whether the server control's child controls have been created.

ClientID Control ID for HTML markup.

26 | P a g e

Context The HttpContext object associated with the server control.

Controls Collection of all controls contained within the control.

ControlStyle The style of the Web server control.

CssClass CSS class

DataItemContainer Gets a reference to the naming container if the naming container implements

IDataItemContainer.

DataKeysContainer Gets a reference to the naming container if the naming container implements

IDataKeysControl.

DesignMode It indicates whether the control is being used on a design surface.

DisabledCssClass Gets or sets the CSS class to apply to the rendered HTML element when the

control is disabled.

Enabled Indicates whether the control is grayed out.

EnableTheming Indicates whether theming applies to the control.

EnableViewState Indicates whether the view state of the control is maintained.

Events Gets a list of event handler delegates for the control.

Font Font.

27 | P a g e

Forecolor Foreground color.

HasAttributes Indicates whether the control has attributes set.

HasChildViewState Indicates whether the current server control's child controls have any saved

view-state settings.

Height Height in pixels or %.

ID Identifier for the control.

IsChildControlStateCleared Indicates whether controls contained within this control have control state.

IsEnabled Gets a value indicating whether the control is enabled.

IsTrackingViewState It indicates whether the server control is saving changes to its view state.

IsViewStateEnabled It indicates whether view state is enabled for this control.

LoadViewStateById It indicates whether the control participates in loading its view state by ID

instead of index.

Page Page containing the control.

Parent Parent control.

RenderingCompatibility It specifies the ASP.NET version that the rendered HTML will be compatible

with.

28 | P a g e

Site The container that hosts the current control when rendered on a design

surface.

SkinID Gets or sets the skin to apply to the control.

Style Gets a collection of text attributes that will be rendered as a style attribute on

the outer tag of the Web server control.

TabIndex Gets or sets the tab index of the Web server control.

TagKey Gets the HtmlTextWriterTag value that corresponds to this Web server

control.

TagName Gets the name of the control tag.

TemplateControl The template that contains this control.

TemplateSourceDirectory Gets the virtual directory of the page or control containing this control.

ToolTip Gets or sets the text displayed when the mouse pointer hovers over the web

server control.

UniqueID Unique identifier.

ViewState Gets a dictionary of state information that saves and restores the view state of

a server control across multiple requests for the same page.

ViewStateIgnoreCase It indicates whether the StateBag object is case-insensitive.

ViewStateMode Gets or sets the view-state mode of this control.

29 | P a g e

Visible It indicates whether a server control is visible.

Width Gets or sets the width of the Web server control.

Methods of the Server Controls

The following table provides the methods of the server controls:

Method Description

AddAttributesToRender Adds HTML attributes and styles that need to be rendered to the specified

HtmlTextWriterTag.

AddedControl Called after a child control is added to the Controls collection of the

control object.

AddParsedSubObject Notifies the server control that an element, either XML or HTML, was

parsed, and adds the element to the server control's control collection.

ApplyStyleSheetSkin Applies the style properties defined in the page style sheet to the control.

ClearCachedClientID Infrastructure. Sets the cached ClientID value to null.

ClearChildControlState Deletes the control-state information for the server control's child

controls.

ClearChildState Deletes the view-state and control-state information for all the server

control's child controls.

ClearChildViewState Deletes the view-state information for all the server control's child

controls.

30 | P a g e

CreateChildControls Used in creating child controls.

CreateControlCollection Creates a new ControlCollection object to hold the child controls.

CreateControlStyle Creates the style object that is used to implement all style related

properties.

DataBind Binds a data source to the server control and all its child controls.

DataBind(Boolean) Binds a data source to the server control and all its child controls with an

option to raise the DataBinding event.

DataBindChildren Binds a data source to the server control's child controls.

Dispose Enables a server control to perform final clean up before it is released

from memory.

EnsureChildControls Determines whether the server control contains child controls. If it does

not, it creates child controls.

EnsureID Creates an identifier for controls that do not have an identifier.

Equals(Object) Determines whether the specified object is equal to the current object.

Finalize Allows an object to attempt to free resources and perform other cleanup

operations before the object is reclaimed by garbage collection.

FindControl(String) Searches the current naming container for a server control with the

specified id parameter.

31 | P a g e

FindControl(String, Int32) Searches the current naming container for a server control with the

specified id and an integer.

Focus Sets input focus to a control.

GetDesignModeState Gets design-time data for a control.

GetType Gets the type of the current instance.

GetUniqueIDRelativeTo Returns the prefixed portion of the UniqueID property of the specified

control.

HasControls Determines if the server control contains any child controls.

HasEvents Indicates whether events are registered for the control or any child

controls.

IsLiteralContent Determines if the server control holds only literal content.

LoadControlState Restores control-state information.

LoadViewState Restores view-state information.

MapPathSecure Retrieves the physical path that a virtual path, either absolute or relative,

maps to.

MemberwiseClone Creates a shallow copy of the current object.

MergeStyle Copies any nonblank elements of the specified style to the web control,

but does not overwrite any existing style elements of the control.

32 | P a g e

OnBubbleEvent Determines whether the event for the server control is passed up the

page's UI server control hierarchy.

OnDataBinding Raises the data binding event.

OnInit Raises the Init event.

OnLoad Raises the Load event.

OnPreRender Raises the PreRender event.

OnUnload Raises the Unload event.

OpenFile Gets a Stream used to read a file.

RemovedControl Called after a child control is removed from the controls collection of the

control object.

Render Renders the control to the specified HTML writer.

RenderBeginTag Renders the HTML opening tag of the control to the specified writer.

RenderChildren Outputs the contents of a server control's children to a provided

HtmlTextWriter object, which writes the contents to be rendered on the

client.

RenderContents Renders the contents of the control to the specified writer.

RenderControl(HtmlTextWriter) Outputs server control content to a provided HtmlTextWriter object and

stores tracing information about the control if tracing is enabled.

33 | P a g e

RenderEndTag Renders the HTML closing tag of the control into the specified writer.

ResolveAdapter Gets the control adapter responsible for rendering the specified control.

SaveControlState Saves any server control state changes that have occurred since the time

the page was posted back to the server.

SaveViewState Saves any state that was modified after the TrackViewState method was

invoked.

SetDesignModeState Sets design-time data for a control.

ToString Returns a string that represents the current object.

TrackViewState Causes the control to track changes to its view state so that they can be

stored in the object's view state property.

Example

Let us look at a particular server control - a tree view control. A Tree view control comes under

navigation controls. Other Navigation controls are: Menu control and SiteMapPath control.

Add a tree view control on the page. Select Edit Nodes... from the tasks. Edit each of the nodes

using the Tree view node editor as shown:

34 | P a g e

Once you have created the nodes, it looks like the following in design view:

The AutoFormat... task allows you to format the tree view as shown:

Add a label control and a text box control on the page and name them lblmessage and

txtmessage respectively.

35 | P a g e

Write a few lines of code to ensure that when a particular node is selected, the label control

displays the node text and the text box displays all child nodes under it, if any. The code behind

the file should look like this:

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

namespace eventdemo {

 public partial class treeviewdemo : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 txtmessage.Text = " ";

 }

 protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e) {

 txtmessage.Text = " ";

 lblmessage.Text = "Selected node changed to: " + TreeView1.SelectedNode.Text;

 TreeNodeCollection childnodes = TreeView1.SelectedNode.ChildNodes;

 if(childnodes != null) {

 txtmessage.Text = " ";

 foreach (TreeNode t in childnodes) {

 txtmessage.Text += t.Value;

 }

 }

 }

 }

36 | P a g e

}

Execute the page to see the effects. You will be able to expand and collapse the nodes.

ASP.NET Web Forms Project

We are using Visual studio 2017 to create web project. It includes the following steps:

1. Creating a new project

Click on the file menu from the menu bar and select new -> project.

37 | P a g e

 Select Project type

It provides couple of choices but we selecting ASP.NET Web Application.

38 | P a g e

Select Project Template

After selecting project types, now, it asks for the type of template that we want to

implement in our application.

Here, we are selecting Web Forms as because we are creating a Web Forms application.

After clicking ok, it shows project in solution explorer window that looks like the below.

39 | P a g e

This project contains a default.aspx file which is a startup file. When we run the project

this file executes first and display a home page of the site.

We can see its output on the browser by selecting view in browser option as we did

below.

Finally, it shows output in the browser like this:

40 | P a g e

Well, we have created a project successfully and running on the browser.

In next chapter, we will create a new web form and link that within project.

An ASP.NET page is made up of a number of server controls along with HTML controls, text,

and images. Sensitive data from the page and the states of different controls on the page are

stored in hidden fields that form the context of that page request.

ASP.NET runtime controls the association between a page instance and its state. An ASP.NET

page is an object of the Page or inherited from it.

All the controls on the pages are also objects of the related control class inherited from a parent

Control class. When a page is run, an instance of the object page is created along with all its

content controls.

An ASP.NET page is also a server side file saved with the .aspx extension. It is modular in

nature and can be divided into the following core sections:

 Page Directives

 Code Section

 Page Layout

Page Directives

41 | P a g e

The page directives set up the environment for the page to run. The @Page directive defines

page-specific attributes used by ASP.NET page parser and compiler. Page directives specify

how the page should be processed, and which assumptions need to be taken about the page.

It allows importing namespaces, loading assemblies, and registering new controls with custom

tag names and namespace prefixes.

Code Section

The code section provides the handlers for the page and control events along with other

functions required. We mentioned that, ASP.NET follows an object model. Now, these objects

raise events when some events take place on the user interface, like a user clicks a button or

moves the cursor. The kind of response these events need to reciprocate is coded in the event

handler functions. The event handlers are nothing but functions bound to the controls.

The code section or the code behind file provides all these event handler routines, and other

functions used by the developer. The page code could be precompiled and deployed in the form

of a binary assembly.

Page Layout

The page layout provides the interface of the page. It contains the server controls, text, inline

JavaScript, and HTML tags.

The following code snippet provides a sample ASP.NET page explaining Page directives, code

section and page layout written in C#:

<!-- directives -->

<% @Page Language="C#" %>

<!-- code section -->

<script runat="server">

 private void convertoupper(object sender, EventArgs e)

 {

 string str = mytext.Value;

 changed_text.InnerHtml = str.ToUpper();

 }

</script>

<!-- Layout -->

<html>

 <head>

42 | P a g e

 <title> Change to Upper Case </title>

 </head>

 <body>

 <h3> Conversion to Upper Case </h3>

 <form runat="server">

 <input runat="server" id="mytext" type="text" />

 <input runat="server" id="button1" type="submit" value="Enter..."

OnServerClick="convertoupper"/>

 <hr />

 <h3> Results: </h3>

 </form>

 </body>

</html>

Copy this file to the web server root directory. Generally it is c:\iNETput\wwwroot. Open the

file from the browser to execute it and it generates following result:

Using Visual Studio IDE

Let us develop the same example using Visual Studio IDE. Instead of typing the code, you can

just drag the controls into the design view:

43 | P a g e

The content file is automatically developed. All you need to add is the Button1_Click routine,

which is as follows:

protected void Button1_Click(object sender, EventArgs e)

{

 string buf = TextBox1.Text;

 changed_text.InnerHtml = buf.ToUpper();

}

The content file code is as given:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

 Inherits="firstexample._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:TextBox ID="TextBox1" runat="server" style="width:224px">

44 | P a g e

 </asp:TextBox>

 <asp:Button ID="Button1" runat="server" Text="Enter..." style="width:85px"

onclick="Button1_Click" />

 <hr />

 <h3> Results: </h3>

 </div>

 </form>

 </body>

</html>

Execute the example by right clicking on the design view and choosing 'View in Browser' from

the popup menu. This generates the following result:

AutoPostback in ASP.NET

 AutoPostback or Postback is nothing but submitting page to server.

 AutoPostback is webpage going to server, Server processes the values and

sends back to same page or redirects to different page.

FAQ: WHAT IS

AUTOPOSTBACK IN

ASP.NET?

45 | P a g e

 Example -1:

Submit

 Click on the above button and observe the progressbar of browser.

 Just Postback happened

When you click on above button, the request goes to server below. The server

processes the request(The code executes) and returns the output(response) to

webpage.

46 | P a g e

In the above picture , you can observe what happens on server side. Page.IsPostback

value will be true if it is postback.

EVENT HANDLING IN ASP.NET

An event is an action or occurrence such as a mouse click, a key press, mouse movements,

or any system-generated notification. A process communicates through events. For

example, interrupts are system-generated events. When events occur, the application

should be able to respond to it and manage it.

Events in ASP.NET raised at the client machine, and handled at the server machine. For

example, a user clicks a button displayed in the browser. A Click event is raised. The browser

handles this client-side event by posting it to the server.

The server has a subroutine describing what to do when the event is raised; it is called the event-

handler. Therefore, when the event message is transmitted to the server, it checks whether the

Click event has an associated event handler. If it has, the event handler is executed.

Event Arguments

ASP.NET event handlers generally take two parameters and return void. The first parameter

represents the object raising the event and the second parameter is event argument.

The general syntax of an event is:

private void EventName (object sender, EventArgs e);

Application and Session Events

The most important application events are:

 Application_Start - It is raised when the application/website is started.

 Application_End - It is raised when the application/website is stopped.

Similarly, the most used Session events are:

 Session_Start - It is raised when a user first requests a page from the application.

 Session_End - It is raised when the session ends.

Page and Control Events

Common page and control events are:

FAQ: EXPLAIN EVENT

HANDLING IN ASP.NET WITH

EXAMPLES

47 | P a g e

 DataBinding - It is raised when a control binds to a data source.

 Disposed - It is raised when the page or the control is released.

 Error - It is a page event, occurs when an unhandled exception is thrown.

 Init - It is raised when the page or the control is initialized.

 Load - It is raised when the page or a control is loaded.

 PreRender - It is raised when the page or the control is to be rendered.

 Unload - It is raised when the page or control is unloaded from memory.

Event Handling Using Controls

All ASP.NET controls are implemented as classes, and they have events which are fired when a

user performs a certain action on them. For example, when a user clicks a button the 'Click'

event is generated. For handling events, there are in-built attributes and event handlers. Event

handler is coded to respond to an event, and take appropriate action on it.

By default, Visual Studio creates an event handler by including a Handles clause on the Sub

procedure. This clause names the control and event that the procedure handles.

The ASP tag for a button control:

<asp:Button ID="btnCancel" runat="server" Text="Cancel" />

The event handler for the Click event:

Protected Sub btnCancel_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles btnCancel.Click

End Sub

An event can also be coded without Handles clause. Then, the handler must be named according

to the appropriate event attribute of the control.

The ASP tag for a button control:

<asp:Button ID="btnCancel" runat="server" Text="Cancel" Onclick="btnCancel_Click" />

The event handler for the Click event:

Protected Sub btnCancel_Click(ByVal sender As Object, ByVal e As System.EventArgs)

End Sub

48 | P a g e

The common control events are:

Event Attribute Controls

Click OnClick Button, image button, link button, image map

Command OnCommand Button, image button, link button

TextChanged OnTextChanged Text box

SelectedIndexChanged OnSelectedIndexChanged Drop-down list, list box, radio button list, check box

list.

CheckedChanged OnCheckedChanged Check box, radio button

Some events cause the form to be posted back to the server immediately, these are called the

postback events. For example, the click event such as, Button.Click.

Some events are not posted back to the server immediately, these are called non-postback

events.

For example, the change events or selection events such as TextBox.TextChanged or

CheckBox.CheckedChanged. The nonpostback events could be made to post back immediately

by setting their AutoPostBack property to true.

Default Events

The default event for the Page object is Load event. Similarly, every control has a default event.

For example, default event for the button control is the Click event.

The default event handler could be created in Visual Studio, just by double clicking the control

in design view. The following table shows some of the default events for common controls:

Control Default Event

AdRotator AdCreated

49 | P a g e

BulletedList Click

Button Click

Calender SelectionChanged

CheckBox CheckedChanged

CheckBoxList SelectedIndexChanged

DataGrid SelectedIndexChanged

DataList SelectedIndexChanged

DropDownList SelectedIndexChanged

HyperLink Click

ImageButton Click

ImageMap Click

LinkButton Click

ListBox SelectedIndexChanged

Menu MenuItemClick

50 | P a g e

RadioButton CheckedChanged

RadioButtonList SelectedIndexChanged

Example

This example includes a simple page with a label control and a button control on it. As the page

events such as Page_Load, Page_Init, Page_PreRender etc. take place, it sends a message,

which is displayed by the label control. When the button is clicked, the Button_Click event is

raised and that also sends a message to be displayed on the label.

Create a new website and drag a label control and a button control on it from the control tool

box. Using the properties window, set the IDs of the controls as .lblmessage. and .btnclick.

respectively. Set the Text property of the Button control as 'Click'.

The markup file (.aspx):

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

 Inherits="eventdemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>Untitled Page</title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lblmessage" runat="server" >

 </asp:Label>

51 | P a g e

 <asp:Button ID="btnclick" runat="server" Text="Click" onclick="btnclick_Click" />

 </div>

 </form>

 </body>

</html>

Double click on the design view to move to the code behind file. The Page_Load event is

automatically created without any code in it. Write down the following self-explanatory code

lines:

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

namespace eventdemo {

 public partial class _Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 lblmessage.Text += "Page load event handled.
";

 if (Page.IsPostBack) {

 lblmessage.Text += "Page post back event handled.
";

 }

 }

 protected void Page_Init(object sender, EventArgs e) {

 lblmessage.Text += "Page initialization event handled.
";

 }

52 | P a g e

 protected void Page_PreRender(object sender, EventArgs e) {

 lblmessage.Text += "Page prerender event handled.
";

 }

 protected void btnclick_Click(object sender, EventArgs e) {

 lblmessage.Text += "Button click event handled.
";

 }

 }

}

Execute the page. The label shows page load, page initialization and, the page pre-render

events. Click the button to see effect:

BASIC CONTROLS OF ASP.NET

Button Controls

ASP.NET provides three types of button control:

 Button : It displays text within a rectangular area.

 Link Button : It displays text that looks like a hyperlink.

 Image Button : It displays an image.

When a user clicks a button, two events are raised: Click and Command.

Basic syntax of button control:

FAQ: DISCUSS ANY FIVE

ASP.NET BASIC CONTROLS.

53 | P a g e

<asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Click" / >

Common properties of the button control:

Property Description

Text The text displayed on the button. This is for button and link button controls

only.

ImageUrl For image button control only. The image to be displayed for the button.

AlternateText For image button control only. The text to be displayed if the browser cannot

display the image.

CausesValidation Determines whether page validation occurs when a user clicks the button. The

default is true.

CommandName A string value that is passed to the command event when a user clicks the

button.

CommandArgument A string value that is passed to the command event when a user clicks the

button.

PostBackUrl The URL of the page that is requested when the user clicks the button.

Text Boxes and Labels

Text box controls are typically used to accept input from the user. A text box control can accept

one or more lines of text depending upon the settings of the TextMode attribute.

Label controls provide an easy way to display text which can be changed from one execution of

a page to the next. If you want to display text that does not change, you use the literal text.

Basic syntax of text control:

<asp:TextBox ID="txtstate" runat="server" ></asp:TextBox>

54 | P a g e

Common Properties of the Text Box and Labels:

Property Description

TextMode Specifies the type of text box. SingleLine creates a standard text box,

MultiLIne creates a text box that accepts more than one line of text and the

Password causes the characters that are entered to be masked. The default is

SingleLine.

Text The text content of the text box.

MaxLength The maximum number of characters that can be entered into the text box.

Wrap It determines whether or not text wraps automatically for multi-line text box;

default is true.

ReadOnly Determines whether the user can change the text in the box; default is false,

i.e., the user can not change the text.

Columns The width of the text box in characters. The actual width is determined based

on the font that is used for the text entry.

Rows The height of a multi-line text box in lines. The default value is 0, means a

single line text box.

The mostly used attribute for a label control is 'Text', which implies the text displayed on the

label.

Check Boxes and Radio Buttons

A check box displays a single option that the user can either check or uncheck and radio buttons

present a group of options from which the user can select just one option.

55 | P a g e

To create a group of radio buttons, you specify the same name for the GroupName attribute of

each radio button in the group. If more than one group is required in a single form, then specify

a different group name for each group.

If you want check box or radio button to be selected when the form is initially displayed, set its

Checked attribute to true. If the Checked attribute is set to true for multiple radio buttons in a

group, then only the last one is considered as true.

Basic syntax of check box:

<asp:CheckBox ID= "chkoption" runat= "Server">

</asp:CheckBox>

Basic syntax of radio button:

<asp:RadioButton ID= "rdboption" runat= "Server">

</asp: RadioButton>

Common properties of check boxes and radio buttons:

Property Description

Text The text displayed next to the check box or radio button.

Checked Specifies whether it is selected or not, default is false.

GroupName Name of the group the control belongs to.

List Controls

ASP.NET provides the following controls

 Drop-down list,

 List box,

 Radio button list,

 Check box list,

 Bulleted list.

56 | P a g e

These control let a user choose from one or more items from the list. List boxes and drop-down

lists contain one or more list items. These lists can be loaded either by code or by the

ListItemCollection editor.

Basic syntax of list box control:

<asp:ListBox ID="ListBox1" runat="server" AutoPostBack="True"

OnSelectedIndexChanged="ListBox1_SelectedIndexChanged">

</asp:ListBox>

Basic syntax of drop-down list control:

<asp:DropDownList ID="DropDownList1" runat="server" AutoPostBack="True"

OnSelectedIndexChanged="DropDownList1_SelectedIndexChanged">

</asp:DropDownList>

Common properties of list box and drop-down Lists:

Property Description

Items The collection of ListItem objects that represents the items in the control. This

property returns an object of type ListItemCollection.

Rows Specifies the number of items displayed in the box. If actual list contains more

rows than displayed then a scroll bar is added.

SelectedIndex The index of the currently selected item. If more than one item is selected,

then the index of the first selected item. If no item is selected, the value of this

property is -1.

SelectedValue The value of the currently selected item. If more than one item is selected,

then the value of the first selected item. If no item is selected, the value of this

property is an empty string ("").

SelectionMode Indicates whether a list box allows single selections or multiple selections.

Common properties of each list item objects:

57 | P a g e

Property Description

Text The text displayed for the item.

Selected Indicates whether the item is selected.

Value A string value associated with the item.

It is important to notes that:

 To work with the items in a drop-down list or list box, you use the Items property of the

control. This property returns a ListItemCollection object which contains all the items of

the list.

 The SelectedIndexChanged event is raised when the user selects a different item from a

drop-down list or list box.

The ListItemCollection

The ListItemCollection object is a collection of ListItem objects. Each ListItem object

represents one item in the list. Items in a ListItemCollection are numbered from 0.

When the items into a list box are loaded using strings like: lstcolor.Items.Add("Blue"), then

both the Text and Value properties of the list item are set to the string value you specify. To set

it differently you must create a list item object and then add that item to the collection.

The ListItemCollection Editor is used to add item to a drop-down list or list box. This is used to

create a static list of items. To display the collection editor, select edit item from the smart tag

menu, or select the control and then click the ellipsis button from the Item property in the

properties window.

Common properties of ListItemCollection:

Property Description

Item(integer) A ListItem object that represents the item at the specified index.

58 | P a g e

Count The number of items in the collection.

Common methods of ListItemCollection:

Methods Description

Add(string) Adds a new item at the end of the collection and assigns the string parameter

to the Text property of the item.

Add(ListItem) Adds a new item at the end of the collection.

Insert(integer, string) Inserts an item at the specified index location in the collection, and assigns

string parameter to the text property of the item.

Insert(integer, ListItem) Inserts the item at the specified index location in the collection.

Remove(string) Removes the item with the text value same as the string.

Remove(ListItem) Removes the specified item.

RemoveAt(integer) Removes the item at the specified index as the integer.

Clear Removes all the items of the collection.

FindByValue(string) Returns the item whose value is same as the string.

FindByValue(Text) Returns the item whose text is same as the string.

Radio Button list and Check Box list

59 | P a g e

A radio button list presents a list of mutually exclusive options. A check box list presents a list

of independent options. These controls contain a collection of ListItem objects that could be

referred to through the Items property of the control.

Basic syntax of radio button list:

<asp:RadioButtonList ID="RadioButtonList1" runat="server" AutoPostBack="True"

 OnSelectedIndexChanged="RadioButtonList1_SelectedIndexChanged">

</asp:RadioButtonList>

Basic syntax of check box list:

<asp:CheckBoxList ID="CheckBoxList1" runat="server" AutoPostBack="True"

 OnSelectedIndexChanged="CheckBoxList1_SelectedIndexChanged">

</asp:CheckBoxList>

Common properties of check box and radio button lists:

Property Description

RepeatLayout This attribute specifies whether the table tags or the normal html flow to use

while formatting the list when it is rendered. The default is Table.

RepeatDirection It specifies the direction in which the controls to be repeated. The values

available are Horizontal and Vertical. Default is Vertical.

RepeatColumns It specifies the number of columns to use when repeating the controls; default

is 0.

Bulleted lists and Numbered lists

The bulleted list control creates bulleted lists or numbered lists. These controls contain a

collection of ListItem objects that could be referred to through the Items property of the control.

Basic syntax of a bulleted list:

<asp:BulletedList ID="BulletedList1" runat="server">

</asp:BulletedList>

Common properties of the bulleted list:

60 | P a g e

Property Description

BulletStyle This property specifies the style and looks of the bullets, or numbers.

RepeatDirection It specifies the direction in which the controls to be repeated. The values

available are Horizontal and Vertical. Default is Vertical.

RepeatColumns It specifies the number of columns to use when repeating the controls; default

is 0.

HyperLink Control

The HyperLink control is like the HTML <a> element.

Basic syntax for a hyperlink control:

<asp:HyperLink ID="HyperLink1" runat="server">

 HyperLink

</asp:HyperLink>

It has the following important properties:

Property Description

ImageUrl Path of the image to be displayed by the control.

NavigateUrl Target link URL.

Text The text to be displayed as the link.

Target The window or frame which loads the linked page.

Image Control

61 | P a g e

The image control is used for displaying images on the web page, or some alternative text, if the

image is not available.

Basic syntax for an image control:

<asp:Image ID="Image1" runat="server">

It has the following important properties:

Property Description

AlternateText Alternate text to be displayed in absence of the image.

ImageAlign Alignment options for the control.

ImageUrl Path of the image to be displayed by the control.

ASP.NET client side coding has two aspects:

 Client side scripts : It runs on the browser and in turn speeds up the execution of page.

For example, client side data validation which can catch invalid data and warn the user

accordingly without making a round trip to the server.

 Client side source code : ASP.NET pages generate this. For example, the HTML source

code of an ASP.NET page contains a number of hidden fields and automatically injected

blocks of JavaScript code, which keeps information like view state or does other jobs to

make the page work.

Client Side Scripts

All ASP.NET server controls allow calling client side code written using JavaScript or

VBScript. Some ASP.NET server controls use client side scripting to provide response to the

users without posting back to the server. For example, the validation controls.

Apart from these scripts, the Button control has a property OnClientClick, which allows

executing client-side script, when the button is clicked.

The traditional and server HTML controls have the following events that can execute a script

when they are raised:

62 | P a g e

Event Description

onblur When the control loses focus

onfocus When the control receives focus

onclick When the control is clicked

onchange When the value of the control changes

onkeydown When the user presses a key

onkeypress When the user presses an alphanumeric key

onkeyup When the user releases a key

onmouseover When the user moves the mouse pointer over the control

onserverclick It raises the ServerClick event of the control, when the control is clicked

Client Side Source Code

We have already discussed that, ASP.NET pages are generally written in two files:

 The content file or the markup file (.aspx)

 The code-behind file

The content file contains the HTML or ASP.NET control tags and literals to form the structure

of the page. The code behind file contains the class definition. At run-time, the content file is

parsed and transformed into a page class.

63 | P a g e

This class, along with the class definition in the code file, and system generated code, together

make the executable code (assembly) that processes all posted data, generates response, and

sends it back to the client.

Consider the simple page:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

 Inherits="clientside._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click" Text="Click" />

 </div>

 <hr />

 <h3> <asp:Label ID="Msg" runat="server" Text=""> </asp:Label> </h3>

 </form>

 </body>

</html>

When this page is run on the browser, the View Source option shows the HTML page sent to

the browser by the ASP.Net runtime:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

64 | P a g e

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head>

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form name="form1" method="post" action="Default.aspx" id="form1">

 <div>

 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

value="/wEPDwUKMTU5MTA2ODYwOWRk31NudGDgvhhA7joJum9Qn5RxU2M=" />

 </div>

 <div>

 <input type="hidden" name="__EVENTVALIDATION"

id="__EVENTVALIDATION"

value="/wEWAwKpjZj0DALs0bLrBgKM54rGBhHsyM61rraxE+KnBTCS8cd1QDJ/"/>

 </div>

 <div>

 <input name="TextBox1" type="text" id="TextBox1" />

 <input type="submit" name="Button1" value="Click" id="Button1" />

 </div>

 <hr />

 <h3></h3>

 </form>

 </body>

</html>

If you go through the code properly, you can see that first two <div> tags contain the hidden

fields which store the view state and validation information.

We have studied the page life cycle and how a page contains various controls. The page itself is

instantiated as a control object. All web forms are basically instances of the ASP.NET Page

65 | P a g e

class. The page class has the following extremely useful properties that correspond to intrinsic

objects:

 Server side code

 Session: Background. ASP.NET session state enables you to store and retrieve

values for a user as the user navigates ASP.NET pages in a Web application.

HTTP is a stateless protocol. This means that a Web server treats each HTTP

request for a page as an independent request

 Application

 Cache

 Request

 Response

 Server

 User

 Trace

We will discuss each of these objects in due time. In this tutorial we will explore the Server

object, the Request object, and the Response object.

Server Object

The Server object in Asp.NET is an instance of the System.Web.HttpServerUtility class. The

HttpServerUtility class provides numerous properties and methods to perform various jobs.

Properties and Methods of the Server object

The methods and properties of the HttpServerUtility class are exposed through the intrinsic

Server object provided by ASP.NET.

The following table provides a list of the properties:

Property Description

MachineName Name of server computer

ScriptTimeOut Gets and sets the request time-out value in seconds.

The following table provides a list of some important methods:

FAQ: WHAT IS SESSION IN

ASP.NET?

66 | P a g e

Method Description

CreateObject(String) Creates an instance of the COM object identified by its ProgID

(Programmatic ID).

CreateObject(Type) Creates an instance of the COM object identified by its Type.

Equals(Object) Determines whether the specified Object is equal to the current Object.

Execute(String) Executes the handler for the specified virtual path in the context of the

current request.

Execute(String, Boolean) Executes the handler for the specified virtual path in the context of the

current request and specifies whether to clear the QueryString and Form

collections.

GetLastError Returns the previous exception.

GetType Gets the Type of the current instance.

HtmlEncode Changes an ordinary string into a string with legal HTML characters.

HtmlDecode Converts an Html string into an ordinary string.

ToString Returns a String that represents the current Object.

Transfer(String) For the current request, terminates execution of the current page and

starts execution of a new page by using the specified URL path of the

page.

67 | P a g e

UrlDecode Converts an URL string into an ordinary string.

UrlEncodeToken Works same as UrlEncode, but on a byte array that contains Base64-

encoded data.

UrlDecodeToken Works same as UrlDecode, but on a byte array that contains Base64-

encoded data.

MapPath Return the physical path that corresponds to a specified virtual file path

on the server.

Transfer Transfers execution to another web page in the current application.

Request Object

The request object is an instance of the System.Web.HttpRequest class. It represents the values

and properties of the HTTP request that makes the page loading into the browser.

The information presented by this object is wrapped by the higher level abstractions (the web

control model). However, this object helps in checking some information such as the client

browser and cookies.

Properties and Methods of the Request Object

The following table provides some noteworthy properties of the Request object:

Property Description

AcceptTypes Gets a string array of client-supported MIME accept types.

ApplicationPath Gets the ASP.NET application's virtual application root path on the

server.

Browser Gets or sets information about the requesting client's browser

68 | P a g e

capabilities.

ContentEncoding Gets or sets the character set of the entity-body.

ContentLength Specifies the length, in bytes, of content sent by the client.

ContentType Gets or sets the MIME content type of the incoming request.

Cookies Gets a collection of cookies sent by the client.

FilePath Gets the virtual path of the current request.

Files Gets the collection of files uploaded by the client, in multipart MIME

format.

Form Gets a collection of form variables.

Headers Gets a collection of HTTP headers.

HttpMethod Gets the HTTP data transfer method (such as GET, POST, or HEAD)

used by the client.

InputStream Gets the contents of the incoming HTTP entity body.

IsSecureConnection Gets a value indicating whether the HTTP connection uses secure

sockets (that is, HTTPS).

QueryString Gets the collection of HTTP query string variables.

69 | P a g e

RawUrl Gets the raw URL of the current request.

RequestType Gets or sets the HTTP data transfer method (GET or POST) used by the

client.

ServerVariables Gets a collection of Web server variables.

TotalBytes Gets the number of bytes in the current input stream.

Url Gets information about the URL of the current request.

UrlReferrer Gets information about the URL of the client's previous request that is

linked to the current URL.

UserAgent Gets the raw user agent string of the client browser.

UserHostAddress Gets the IP host address of the remote client.

UserHostName Gets the DNS name of the remote client.

UserLanguages Gets a sorted string array of client language preferences.

The following table provides a list of some important methods:

Method Description

BinaryRead Performs a binary read of a specified number of bytes from the current

input stream.

Equals(Object) Determines whether the specified object is equal to the current object.

70 | P a g e

(Inherited from object.)

GetType Gets the Type of the current instance.

MapImageCoordinates Maps an incoming image-field form parameter to appropriate x-

coordinate and y-coordinate values.

MapPath(String) Maps the specified virtual path to a physical path.

SaveAs Saves an HTTP request to disk.

ToString Returns a String that represents the current object.

ValidateInput Causes validation to occur for the collections accessed through the

Cookies, Form, and QueryString properties.

Response Object

The Response object represents the server's response to the client request. It is an instance of the

System.Web.HttpResponse class.

In ASP.NET, the response object does not play any vital role in sending HTML text to the

client, because the server-side controls have nested, object oriented methods for rendering

themselves.

However, the HttpResponse object still provides some important functionalities, like the cookie

feature and the Redirect() method. The Response.Redirect() method allows transferring the user

to another page, inside as well as outside the application. It requires a round trip.

Properties and Methods of the Response Object

71 | P a g e

The following table provides some noteworthy properties of the Response object:

Property Description

Buffer Gets or sets a value indicating whether to buffer the output and send it

after the complete response is finished processing.

BufferOutput Gets or sets a value indicating whether to buffer the output and send it

after the complete page is finished processing.

Charset Gets or sets the HTTP character set of the output stream.

ContentEncoding Gets or sets the HTTP character set of the output stream.

ContentType Gets or sets the HTTP MIME type of the output stream.

Cookies Gets the response cookie collection.

Expires Gets or sets the number of minutes before a page cached on a browser

expires.

ExpiresAbsolute Gets or sets the absolute date and time at which to remove cached

information from the cache.

HeaderEncoding Gets or sets an encoding object that represents the encoding for the

current header output stream.

Headers Gets the collection of response headers.

IsClientConnected Gets a value indicating whether the client is still connected to the server.

72 | P a g e

Output Enables output of text to the outgoing HTTP response stream.

OutputStream Enables binary output to the outgoing HTTP content body.

RedirectLocation Gets or sets the value of the Http Location header.

Status Sets the status line that is returned to the client.

StatusCode Gets or sets the HTTP status code of the output returned to the client.

StatusDescription Gets or sets the HTTP status string of the output returned to the client.

SubStatusCode Gets or sets a value qualifying the status code of the response.

SuppressContent Gets or sets a value indicating whether to send HTTP content to the

client.

The following table provides a list of some important methods:

Method Description

AddHeader Adds an HTTP header to the output stream. AddHeader is provided for

compatibility with earlier versions of ASP.

AppendCookie Infrastructure adds an HTTP cookie to the intrinsic cookie collection.

AppendHeader Adds an HTTP header to the output stream.

AppendToLog Adds custom log information to the InterNET Information Services (IIS)

log file.

73 | P a g e

BinaryWrite Writes a string of binary characters to the HTTP output stream.

ClearContent Clears all content output from the buffer stream.

Close Closes the socket connection to a client.

End Sends all currently buffered output to the client, stops execution of the

page, and raises the EndRequest event.

Equals(Object) Determines whether the specified object is equal to the current object.

Flush Sends all currently buffered output to the client.

GetType Gets the Type of the current instance.

Pics Appends a HTTP PICS-Label header to the output stream.

Redirect(String) Redirects a request to a new URL and specifies the new URL.

Redirect(String, Boolean) Redirects a client to a new URL. Specifies the new URL and whether

execution of the current page should terminate.

SetCookie Updates an existing cookie in the cookie collection.

ToString Returns a String that represents the current Object.

TransmitFile(String) Writes the specified file directly to an HTTP response output stream,

without buffering it in memory.

74 | P a g e

Write(Char) Writes a character to an HTTP response output stream.

Write(Object) Writes an object to an HTTP response stream.

Write(String) Writes a string to an HTTP response output stream.

WriteFile(String) Writes the contents of the specified file directly to an HTTP response

output stream as a file block.

WriteFile(String, Boolean) Writes the contents of the specified file directly to an HTTP response

output stream as a memory block.

Example

The following simple example has a text box control where the user can enter name, a button to

send the information to the server, and a label control to display the URL of the client computer.

The content file:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

 Inherits="server_side._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>Untitled Page</title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 Enter your name:

75 | P a g e

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click" Text="Submit" />

 <asp:Label ID="Label1" runat="server"/>

 </div>

 </form>

 </body>

</html>

The code behind Button1_Click:

protected void Button1_Click(object sender, EventArgs e) {

 if (!String.IsNullOrEmpty(TextBox1.Text)) {

 // Access the HttpServerUtility methods through

 // the intrinsic Server object.

 Label1.Text = "Welcome, " + Server.HtmlEncode(TextBox1.Text) + ".
 The url is " +

Server.UrlEncode(Request.Url.ToString())

 }

}

Run the page to see the following result:

Hyper Text Transfer Protocol (HTTP) is a stateless protocol. When the client
disconnects from the server, the ASP.NET engine discards the page objects. This way,

76 | P a g e

each web application can scale up to serve numerous requests simultaneously without
running out of server memory.

However, there needs to be some technique to store the information between requests
and to retrieve it when required. This information i.e., the current value of all the
controls and variables for the current user in the current session is called the State.

STATE MANAGEMENYT IN ASP.NET

ASP.NET manages four types of states:

 View State

 Control State

 Session State

 Application State

View State

The view state is the state of the page and all its controls. It is automatically maintained
across posts by the ASP.NET framework.

When a page is sent back to the client, the changes in the properties of the page and
its controls are determined, and stored in the value of a hidden input field named
_VIEWSTATE. When the page is again posted back, the _VIEWSTATE field is sent to
the server with the HTTP request.

The view state could be enabled or disabled for:

 The entire application by setting the EnableViewState property in the <pages>

section of web.config file.

 A page by setting the EnableViewState attribute of the Page directive, as <%@

Page Language="C#" EnableViewState="false" %>

 A control by setting the Control.EnableViewState property.

It is implemented using a view state object defined by the StateBag class which defines

a collection of view state items. The state bag is a data structure containing attribute

value pairs, stored as strings associated with objects.

FAQ: EXPLAIN THE VARIOUS

STATE MANAGEMENT IN ASP.NET

77 | P a g e

The StateBag class has the following properties:

Properties Description

Item(name) The value of the view state item with the specified name. This is the default

property of the StateBag class.

Count The number of items in the view state collection.

Keys Collection of keys for all the items in the collection.

Values Collection of values for all the items in the collection.

The StateBag class has the following methods:

Methods Description

Add(name, value) Adds an item to the view state collection and existing item is updated.

Clear Removes all the items from the collection.

Equals(Object) Determines whether the specified object is equal to the current object.

Finalize Allows it to free resources and perform other cleanup operations.

GetEnumerator Returns an enumerator that iterates over all the key/value pairs of the

StateItem objects stored in the StateBag object.

GetType Gets the type of the current instance.

78 | P a g e

IsItemDirty Checks a StateItem object stored in the StateBag object to evaluate whether

it has been modified.

Remove(name) Removes the specified item.

SetDirty Sets the state of the StateBag object as well as the Dirty property of each of

the StateItem objects contained by it.

SetItemDirty Sets the Dirty property for the specified StateItem object in the StateBag

object.

ToString Returns a string representing the state bag object.

Example

The following example demonstrates the concept of storing view state. Let us keep a
counter, which is incremented each time the page is posted back by clicking a button
on the page. A label control shows the value in the counter.

The markup file code is as follows:

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="Default.aspx.cs" Inherits="statedemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <h3>View State demo</h3>

 Page Counter:

79 | P a g e

 <asp:Label ID="lblCounter" runat="server" />

 <asp:Button ID="btnIncrement" runat="server" Text="Add

Count" onclick="btnIncrement_Click" />

 </div>

 </form>

 </body>

</html>

The code behind file for the example is shown here:

public partial class _Default : System.Web.UI.Page

{

 public int counter

 {

 get

 {

 if (ViewState["pcounter"] != null)

 {

 return ((int)ViewState["pcounter"]);

 }

 else

 {

 return 0;

 }

 }

 set

 {

 ViewState["pcounter"] = value;

 }

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 lblCounter.Text = counter.ToString();

 counter++;

 }

}

It would produce the following result:

80 | P a g e

Control State

Control state cannot be modified, accessed directly, or disabled.

Session State

When a user connects to an ASP.NET website, a new session object is created.
When session state is turned on, a new session state object is created for each new
request. This session state object becomes part of the context and it is available
through the page.

Session state is generally used for storing application data such as inventory, supplier
list, customer record, or shopping cart. It can also keep information about the user and
his preferences, and keep the track of pending operations.

Sessions are identified and tracked with a 120-bit SessionID, which is passed from
client to server and back as cookie or a modified URL. The SessionID is globally
unique and random.

The session state object is created from the HttpSessionState class, which defines a
collection of session state items.

The HttpSessionState class has the following properties:

Properties Description

SessionID The unique session identifier.

Item(name) The value of the session state item with the specified name. This is the

default property of the HttpSessionState class.

Count The number of items in the session state collection.

TimeOut Gets and sets the amount of time, in minutes, allowed between requests

before the session-state provider terminates the session.

The HttpSessionState class has the following methods:

Methods Description

81 | P a g e

Add(name, value) Adds an item to the session state collection.

Clear Removes all the items from session state collection.

Remove(name) Removes the specified item from the session state collection.

RemoveAll Removes all keys and values from the session-state collection.

RemoveAt Deletes an item at a specified index from the session-state collection.

The session state object is a name-value pair to store and retrieve some information
from the session state object. You could use the following code for the same:

void StoreSessionInfo()

{

 String fromuser = TextBox1.Text;

 Session["fromuser"] = fromuser;

}

void RetrieveSessionInfo()

{

 String fromuser = Session["fromuser"];

 Label1.Text = fromuser;

}

The above code stores only strings in the Session dictionary object, however, it can
store all the primitive data types and arrays composed of primitive data types, as well
as the DataSet, DataTable, HashTable, and Image objects, as well as any user-defined
class that inherits from the ISerializable object.

Example

The following example demonstrates the concept of storing session state. There are
two buttons on the page, a text box to enter string and a label to display the text stored
from last session.

The mark up file code is as follows:

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

82 | P a g e

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <table style="width: 568px; height: 103px">

 <tr>

 <td style="width: 209px">

 <asp:Label ID="lblstr" runat="server"

Text="Enter a String" style="width:94px">

 </asp:Label>

 </td>

 <td style="width: 317px">

 <asp:TextBox ID="txtstr" runat="server"

style="width:227px">

 </asp:TextBox>

 </td>

 </tr>

 <tr>

 <td style="width: 209px"> </td>

 <td style="width: 317px"> </td>

 </tr>

 <tr>

 <td style="width: 209px">

 <asp:Button ID="btnnrm" runat="server"

 Text="No action button" style="width:128px"

/>

 </td>

 <td style="width: 317px">

 <asp:Button ID="btnstr" runat="server"

 OnClick="btnstr_Click" Text="Submit the

String" />

 </td>

 </tr>

 <tr>

83 | P a g e

 <td style="width: 209px"> </td>

 <td style="width: 317px"> </td>

 </tr>

 <tr>

 <td style="width: 209px">

 <asp:Label ID="lblsession" runat="server"

style="width:231px" >

 </asp:Label>

 </td>

 <td style="width: 317px"> </td>

 </tr>

 <tr>

 <td style="width: 209px">

 <asp:Label ID="lblshstr" runat="server">

 </asp:Label>

 </td>

 <td style="width: 317px"> </td>

 </tr>

 </table>

 </div>

 </form>

 </body>

</html>

It should look like the following in design view:

The code behind file is given here:

public partial class _Default : System.Web.UI.Page

{

 String mystr;

 protected void Page_Load(object sender, EventArgs e)

84 | P a g e

 {

 this.lblshstr.Text = this.mystr;

 this.lblsession.Text = (String)this.Session["str"];

 }

 protected void btnstr_Click(object sender, EventArgs e)

 {

 this.mystr = this.txtstr.Text;

 this.Session["str"] = this.txtstr.Text;

 this.lblshstr.Text = this.mystr;

 this.lblsession.Text = (String)this.Session["str"];

 }

}

Execute the file and observe how it works:

Application State

The ASP.NET application is the collection of all web pages, code and other files within
a single virtual directory on a web server. When information is stored in application
state, it is available to all the users.

To provide for the use of application state, ASP.NET creates an application state object
for each application from the HTTPApplicationState class and stores this object in
server memory. This object is represented by class file global.asax.

Application State is mostly used to store hit counters and other statistical data, global
application data like tax rate, discount rate etc. and to keep the track of users visiting
the site.

The HttpApplicationState class has the following properties:

Properties Description

Item(name) The value of the application state item with the specified name. This is the

default property of the HttpApplicationState class.

85 | P a g e

Count The number of items in the application state collection.

The HttpApplicationState class has the following methods:

Methods Description

Add(name, value) Adds an item to the application state collection.

Clear Removes all the items from the application state collection.

Remove(name) Removes the specified item from the application state collection.

RemoveAll Removes all objects from an HttpApplicationState collection.

RemoveAt Removes an HttpApplicationState object from a collection by index.

Lock() Locks the application state collection so only the current user can access it.

Unlock() Unlocks the application state collection so all the users can access it.

Application state data is generally maintained by writing handlers for the events:

 Application_Start

 Application_End

 Application_Error

 Session_Start

 Session_End

The following code snippet shows the basic syntax for storing application state
information:

Void Application_Start(object sender, EventArgs e)

{

 Application["startMessage"] = "The application has started.";

}

Void Application_End(object sender, EventArgs e)

86 | P a g e

{

 Application["endtMessage"] = "The application has ended.";

}

****END OF UNIT-II****

87 | P a g e

 **** UNIT – III ****

VALIDATORS

ASP.NET validation controls validate the user input data to ensure that useless,

unauthenticated, or contradictory data don't get stored.

ASP.NET provides the following validation controls:

 RequiredFieldValidator

 RangeValidator

 CompareValidator

 RegularExpressionValidator

 CustomValidator

 ValidationSummary

BaseValidator Class

The validation control classes are inherited from the BaseValidator class hence they inherit its

properties and methods. Therefore, it would help to take a look at the properties and the

methods of this base class, which are common for all the validation controls:

FAQ: DEFINE

VALIDATION

FAQ: DISCUSS THE VARIOUS

VALIDATORS WITH EXAMPLES

88 | P a g e

Members Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message is shown.

EnableClientScript Indicates whether client side validation will take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is valid.

SetFocusOnError It indicates whether in case of an invalid control, the focus should switch to

the related input control.

ValidationGroup The logical group of multiple validators, where this control belongs.

Validate() This method revalidates the control and updates the IsValid property.

RequiredFieldValidator Control

The RequiredFieldValidator control ensures that the required field is not empty. It is generally

tied to a text box to force input into the text box.

The syntax of the control is as given:

<asp:RequiredFieldValidator ID="rfvcandidate"

 runat="server" ControlToValidate ="ddlcandidate"

89 | P a g e

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

</asp:RequiredFieldValidator>

RangeValidator Control

The RangeValidator control verifies that the input value falls within a predetermined range.

It has three specific properties:

Properties Description

Type It defines the type of the data. The available values are: Currency, Date,

Double, Integer, and String.

MinimumValue It specifies the minimum value of the range.

MaximumValue It specifies the maximum value of the range.

The syntax of the control is as given:

<asp:RangeValidator ID="rvclass" runat="server" ControlToValidate="txtclass"

 ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

 MinimumValue="6" Type="Integer">

</asp:RangeValidator>

CompareValidator Control

The CompareValidator control compares a value in one control with a fixed value or a value

in another control.

90 | P a g e

It has the following specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare with.

ValueToCompare It specifies the constant value to compare with.

Operator It specifies the comparison operator, the available values are: Equal,

NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and

DataTypeCheck.

The basic syntax of the control is as follows:

<asp:CompareValidator ID="CompareValidator1" runat="server"

 ErrorMessage="CompareValidator">

</asp:CompareValidator>

RegularExpressionValidator

The RegularExpressionValidator allows validating the input text by matching against a

pattern of a regular expression. The regular expression is set in the ValidationExpression

property.

The following table summarizes the commonly used syntax constructs for regular expressions:

Character Escapes Description

\b Matches a backspace.

\t Matches a tab.

91 | P a g e

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a new line.

\ Escape character.

Apart from single character match, a class of characters could be specified that can be matched,

called the metacharacters.

Metacharacters Description

. Matches any character except \n.

[abcd] Matches any character in the set.

[^abcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab, new line etc.

92 | P a g e

\S Matches any non-whitespace character.

\d Matches any decimal character.

\D Matches any non-decimal character.

Quantifiers could be added to specify number of times a character could appear.

Quantifier Description

* Zero or more matches.

+ One or more matches.

? Zero or one matches.

{N} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.

The syntax of the control is as given:

<asp:RegularExpressionValidator ID="string" runat="server" ErrorMessage="string"

 ValidationExpression="string" ValidationGroup="string">

</asp:RegularExpressionValidator>

CustomValidator

The CustomValidator control allows writing application specific custom validation routines

for both the client side and the server side validation.

93 | P a g e

The client side validation is accomplished through the ClientValidationFunction property. The

client side validation routine should be written in a scripting language, such as JavaScript or

VBScript, which the browser can understand.

The server side validation routine must be called from the control's ServerValidate event

handler. The server side validation routine should be written in any .Net language, like C# or

VB.Net.

The basic syntax for the control is as given:

<asp:CustomValidator ID="CustomValidator1" runat="server"

 ClientValidationFunction=.cvf_func. ErrorMessage="CustomValidator">

</asp:CustomValidator>

ValidationSummary

The ValidationSummary control does not perform any validation but shows a summary of all

errors in the page. The summary displays the values of the ErrorMessage property of all

validation controls that failed validation.

The following two mutually inclusive properties list out the error message:

 ShowSummary : shows the error messages in specified format.

 ShowMessageBox : shows the error messages in a separate window.

The syntax for the control is as given:

<asp:ValidationSummary ID="ValidationSummary1" runat="server"

 DisplayMode = "BulletList" ShowSummary = "true" HeaderText="Errors:" />

Validation Groups

Complex pages have different groups of information provided in different panels. In such

situation, a need might arise for performing validation separately for separate group. This kind

of situation is handled using validation groups.

To create a validation group, you should put the input controls and the validation controls into

the same logical group by setting their ValidationGroup property.

94 | P a g e

Example

The following example describes a form to be filled up by all the students of a school, divided

into four houses, for electing the school president. Here, we use the validation controls to

validate the user input.

This is the form in design view:

The content file code is as given:

<form id="form1" runat="server">

 <table style="width: 66%;">

 <tr>

 <td class="style1" colspan="3" align="center">

 <asp:Label ID="lblmsg"

 Text="President Election Form : Choose your president"

 runat="server" />

 </td>

 </tr>

 <tr>

 <td class="style3">

 Candidate:

 </td>

 <td class="style2">

 <asp:DropDownList ID="ddlcandidate" runat="server" style="width:239px">

 <asp:ListItem>Please Choose a Candidate</asp:ListItem>

95 | P a g e

 <asp:ListItem>M H Kabir</asp:ListItem>

 <asp:ListItem>Steve Taylor</asp:ListItem>

 <asp:ListItem>John Abraham</asp:ListItem>

 <asp:ListItem>Venus Williams</asp:ListItem>

 </asp:DropDownList>

 </td>

 <td>

 <asp:RequiredFieldValidator ID="rfvcandidate"

 runat="server" ControlToValidate ="ddlcandidate"

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

 </asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td class="style3">

 House:

 </td>

 <td class="style2">

 <asp:RadioButtonList ID="rblhouse" runat="server" RepeatLayout="Flow">

 <asp:ListItem>Red</asp:ListItem>

 <asp:ListItem>Blue</asp:ListItem>

 <asp:ListItem>Yellow</asp:ListItem>

 <asp:ListItem>Green</asp:ListItem>

 </asp:RadioButtonList>

 </td>

 <td>

 <asp:RequiredFieldValidator ID="rfvhouse" runat="server"

 ControlToValidate="rblhouse" ErrorMessage="Enter your house name" >

 </asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td class="style3">

96 | P a g e

 Class:

 </td>

 <td class="style2">

 <asp:TextBox ID="txtclass" runat="server"></asp:TextBox>

 </td>

 <td>

 <asp:RangeValidator ID="rvclass"

 runat="server" ControlToValidate="txtclass"

 ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

 MinimumValue="6" Type="Integer">

 </asp:RangeValidator>

 </td>

 </tr>

 <tr>

 <td class="style3">

 Email:

 </td>

 <td class="style2">

 <asp:TextBox ID="txtemail" runat="server" style="width:250px">

 </asp:TextBox>

 </td>

 <td>

 <asp:RegularExpressionValidator ID="remail" runat="server"

 ControlToValidate="txtemail" ErrorMessage="Enter your email"

 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

 </asp:RegularExpressionValidator>

 </td>

 </tr>

 <tr>

 <td class="style3" align="center" colspan="3">

 <asp:Button ID="btnsubmit" runat="server" onclick="btnsubmit_Click"

 style="text-align: center" Text="Submit" style="width:140px" />

 </td>

 </tr>

97 | P a g e

 </table>

 <asp:ValidationSummary ID="ValidationSummary1" runat="server"

 DisplayMode ="BulletList" ShowSummary ="true" HeaderText="Errors:" />

</form>

The code behind the submit button:

protected void btnsubmit_Click(object sender, EventArgs e)

{

 if (Page.IsValid)

 {

 lblmsg.Text = "Thank You";

 }

 else

 {

 lblmsg.Text = "Fill up all the fields";

 }

RICH CONTROLS

ASP.NET has two controls that allow users to upload files to the web server. Once the server

receives the posted file data, the application can save it, check it, or ignore it. The following

controls allow the file uploading:

 HtmlInputFile - an HTML server control

FAQ: WHAT ARE RICH

CONTROLS?

98 | P a g e

 FileUpload - and ASP.NET web control

Both controls allow file uploading, but the FileUpload control automatically sets the encoding

of the form, whereas the HtmlInputFile does not do so.

In this tutorial, we use the FileUpload control. The FileUpload control allows the user to browse

for and select the file to be uploaded, providing a browse button and a text box for entering the

filename.

Once, the user has entered the filename in the text box by typing the name or browsing, the

SaveAs method of the FileUpload control can be called to save the file to the disk.

The basic syntax of FileUpload is:

<asp:FileUpload ID= "Uploader" runat = "server" />

The FileUpload class is derived from the WebControl class, and inherits all its members. Apart

from those, the FileUpload class has the following read-only properties:

Properties Description

FileBytes Returns an array of the bytes in a file to be uploaded.

FileContent Returns the stream object pointing to the file to be uploaded.

FileName Returns the name of the file to be uploaded.

HasFile Specifies whether the control has a file to upload.

PostedFile Returns a reference to the uploaded file.

The posted file is encapsulated in an object of type HttpPostedFile, which could be accessed

through the PostedFile property of the FileUpload class.

The HttpPostedFile class has the following frequently used properties:

Properties Description

99 | P a g e

ContentLength Returns the size of the uploaded file in bytes.

ContentType Returns the MIME type of the uploaded file.

FileName Returns the full filename.

InputStream Returns a stream object pointing to the uploaded file.

Example

The following example demonstrates the FileUpload control and its properties. The form has a

FileUpload control along with a save button and a label control for displaying the file name,

file type, and file length.

In the design view, the form looks as follows:

The content file code is as given:

<body>

 <form id="form1" runat="server">

 <div>

 <h3> File Upload:</h3>

 <asp:FileUpload ID="FileUpload1" runat="server" />

100 | P a g e

 <asp:Button ID="btnsave" runat="server" onclick="btnsave_Click" Text="Save"

style="width:85px" />

 <asp:Label ID="lblmessage" runat="server" />

 </div>

 </form>

</body>

The code behind the save button is as given:

protected void btnsave_Click(object sender, EventArgs e)

{

 StringBuilder sb = new StringBuilder();

 if (FileUpload1.HasFile)

 {

 try

 {

 sb.AppendFormat(" Uploading file: {0}", FileUpload1.FileName);

 //saving the file

 FileUpload1.SaveAs("<c:\\SaveDirectory>" + FileUpload1.FileName);

 //Showing the file information

 sb.AppendFormat("
 Save As: {0}", FileUpload1.PostedFile.FileName);

 sb.AppendFormat("
 File type: {0}", FileUpload1.PostedFile.ContentType);

 sb.AppendFormat("
 File length: {0}", FileUpload1.PostedFile.ContentLength);

 sb.AppendFormat("
 File name: {0}", FileUpload1.PostedFile.FileName);

 }catch (Exception ex)

 {

 sb.Append("
 Error
");

 sb.AppendFormat("Unable to save file
 {0}", ex.Message);

 }

 }

 else

 {

 lblmessage.Text = sb.ToString();

 }

}

101 | P a g e

Note the following:

 The StringBuilder class is derived from System.IO namespace, so it needs to be

included.

 The try and catch blocks are used for catching errors, and display the error message.

CALENDER CONTROL

The calendar control is a functionally rich web control, which provides the following

capabilities:

 Displaying one month at a time

 Selecting a day, a week or a month

 Selecting a range of days

 Moving from month to month

 Controlling the display of the days programmatically

The basic syntax of a calendar control is:

<asp:Calender ID = "Calendar1" runat = "server">

</asp:Calender>

Properties and Events of the Calendar Control

The calendar control has many properties and events, using which you can customize the

actions and display of the control. The following table provides some important properties of

the Calendar control:

Properties Description

Caption Gets or sets the caption for the calendar control.

CaptionAlign Gets or sets the alignment for the caption.

CellPadding Gets or sets the number of spaces between the data and the cell border.

CellSpacing Gets or sets the space between cells.

FAQ: DESCIRBE THE CALENDER

CONTROL WITH AN EXAMPLE

102 | P a g e

DayHeaderStyle Gets the style properties for the section that displays the day of the week.

DayNameFormat Gets or sets format of days of the week.

DayStyle Gets the style properties for the days in the displayed month.

FirstDayOfWeek Gets or sets the day of week to display in the first column.

NextMonthText Gets or sets the text for next month navigation control. The default value is >.

NextPrevFormat Gets or sets the format of the next and previous month navigation control.

OtherMonthDayStyle Gets the style properties for the days on the Calendar control that are not in

the displayed month.

PrevMonthText Gets or sets the text for previous month navigation control. The default value

is <.

SelectedDate Gets or sets the selected date.

SelectedDates Gets a collection of DateTime objects representing the selected dates.

SelectedDayStyle Gets the style properties for the selected dates.

SelectionMode Gets or sets the selection mode that specifies whether the user can select a

single day, a week or an entire month.

SelectMonthText Gets or sets the text for the month selection element in the selector column.

103 | P a g e

SelectorStyle Gets the style properties for the week and month selector column.

SelectWeekText Gets or sets the text displayed for the week selection element in the selector

column.

ShowDayHeader Gets or sets the value indicating whether the heading for the days of the week

is displayed.

ShowGridLines Gets or sets the value indicating whether the gridlines would be shown.

ShowNextPrevMonth Gets or sets a value indicating whether next and previous month navigation

elements are shown in the title section.

ShowTitle Gets or sets a value indicating whether the title section is displayed.

TitleFormat Gets or sets the format for the title section.

Titlestyle Get the style properties of the title heading for the Calendar control.

TodayDayStyle Gets the style properties for today's date on the Calendar control.

TodaysDate Gets or sets the value for today's date.

UseAccessibleHeader Gets or sets a value that indicates whether to render the table header <th>

HTML element for the day headers instead of the table data <td> HTML

element.

VisibleDate Gets or sets the date that specifies the month to display.

WeekendDayStyle Gets the style properties for the weekend dates on the Calendar control.

104 | P a g e

The Calendar control has the following three most important events that allow the developers to

program the calendar control. They are:

Events Description

SelectionChanged It is raised when a day, a week or an entire month is selected.

DayRender It is raised when each data cell of the calendar control is rendered.

VisibleMonthChanged It is raised when user changes a month.

Working with the Calendar Control

Putting a bare-bone calendar control without any code behind file provides a workable calendar

to a site, which shows the months and days of the year. It also allows navigation to next and

previous months.

Calendar controls allow the users to select a single day, a week, or an entire month. This is done

by using the SelectionMode property. This property has the following values:

Properties Description

Day To select a single day.

105 | P a g e

DayWeek To select a single day or an entire week.

DayWeekMonth To select a single day, a week, or an entire month.

None Nothing can be selected.

The syntax for selecting days:

<asp:Calender ID = "Calendar1" runat = "server" SelectionMode="DayWeekMonth">

</asp:Calender>

When the selection mode is set to the value DayWeekMonth, an extra column with the >

symbol appears for selecting the week, and a >> symbol appears to the left of the days name for

selecting the month.

Example

The following example demonstrates selecting a date and displays the date in a label:

The content file code is as follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="calendardemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

106 | P a g e

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <h3> Your Birthday:</h3>

 <asp:Calendar ID="Calendar1" runat="server SelectionMode="DayWeekMonth"

onselectionchanged="Calendar1_SelectionChanged">

 </asp:Calendar>

 </div>

 <p>Todays date is:

 <asp:Label ID="lblday" runat="server"></asp:Label>

 </p>

 <p>Your Birday is:

 <asp:Label ID="lblbday" runat="server"></asp:Label>

 </p>

 </form>

 </body>

</html>

The event handler for the event SelectionChanged:

protected void Calendar1_SelectionChanged(object sender, EventArgs e)

{

 lblday.Text = Calendar1.TodaysDate.ToShortDateString();

 lblbday.Text = Calendar1.SelectedDate.ToShortDateString();

}

When the file is run, it should produce the following output:

107 | P a g e

ADROTATOR CONTROL

The AdRotator control randomly selects banner graphics from a list, which is specified in

an external XML schedule file. This external XML schedule file is called the

advertisement file.

The AdRotator control allows you to specify the advertisement file and the type of window that

the link should follow in the AdvertisementFile and the Target property respectively.

The basic syntax of adding an AdRotator is as follows:

<asp:AdRotator runat = "server" AdvertisementFile = "adfile.xml" Target = "_blank" />

Before going into the details of the AdRotator control and its properties, let us look into the

construction of the advertisement file.

The Advertisement File

The advertisement file is an XML file, which contains the information about the advertisements

to be displayed.

Extensible Markup Language (XML) is a W3C standard for text document markup. It is a text-

based markup language that enables you to store data in a structured format by using

meaningful tags. The term 'extensible' implies that you can extend your ability to describe a

document by defining meaningful tags for the application.

FAQ: DESCRIBE ADROTATOR WITH

A SUITABE EXAMPLES

108 | P a g e

XML is not a language in itself, like HTML, but a set of rules for creating new markup

languages. It is a meta-markup language. It allows developers to create custom tag sets for

special uses. It structures, stores, and transports the information.

Following is an example of XML file:

<BOOK>

 <NAME> Learn XML </NAME>

 <AUTHOR> Samuel Peterson </AUTHOR>

 <PUBLISHER> NSS Publications </PUBLISHER>

 <PRICE> $30.00</PRICE>

</BOOK>

Like all XML files, the advertisement file needs to be a structured text file with well-defined

tags delineating the data. There are the following standard XML elements that are commonly

used in the advertisement file:

Element Description

Advertisements Encloses the advertisement file.

Ad Delineates separate ad.

ImageUrl The path of image that will be displayed.

NavigateUrl The link that will be followed when the user clicks the ad.

AlternateText The text that will be displayed instead of the picture if it cannot be displayed.

Keyword Keyword identifying a group of advertisements. This is used for filtering.

Impressions The number indicating how often an advertisement will appear.

Height Height of the image to be displayed.

109 | P a g e

Width Width of the image to be displayed.

Apart from these tags, customs tags with custom attributes could also be included. The

following code illustrates an advertisement file ads.xml:

<Advertisements>

 <Ad>

 <ImageUrl>rose1.jpg</ImageUrl>

 <NavigateUrl>http://www.1800flowers.com</NavigateUrl>

 <AlternateText>

 Order flowers, roses, gifts and more

 </AlternateText>

 <Impressions>20</Impressions>

 <Keyword>flowers</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>rose2.jpg</ImageUrl>

 <NavigateUrl>http://www.babybouquets.com.au</NavigateUrl>

 <AlternateText>Order roses and flowers</AlternateText>

 <Impressions>20</Impressions>

 <Keyword>gifts</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>rose3.jpg</ImageUrl>

 <NavigateUrl>http://www.flowers2moscow.com</NavigateUrl>

 <AlternateText>Send flowers to Russia</AlternateText>

 <Impressions>20</Impressions>

 <Keyword>russia</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>rose4.jpg</ImageUrl>

 <NavigateUrl>http://www.edibleblooms.com</NavigateUrl>

 <AlternateText>Edible Blooms</AlternateText>

 <Impressions>20</Impressions>

 <Keyword>gifts</Keyword>

 </Ad>

110 | P a g e

</Advertisements>

Properties and Events of the AdRotator Class

The AdRotator class is derived from the WebControl class and inherits its properties. Apart

from those, the AdRotator class has the following properties:

Properties Description

AdvertisementFile The path to the advertisement file.

AlternateTextFeild The element name of the field where alternate text is provided. The default

value is AlternateText.

DataMember The name of the specific list of data to be bound when advertisement file is

not used.

DataSource Control from where it would retrieve data.

DataSourceID Id of the control from where it would retrieve data.

Font Specifies the font properties associated with the advertisement banner control.

ImageUrlField The element name of the field where the URL for the image is provided. The

default value is ImageUrl.

KeywordFilter For displaying the keyword based ads only.

NavigateUrlField The element name of the field where the URL to navigate to is provided. The

default value is NavigateUrl.

111 | P a g e

Target The browser window or frame that displays the content of the page linked.

UniqueID Obtains the unique, hierarchically qualified identifier for the AdRotator

control.

Following are the important events of the AdRotator class:

Events Description

AdCreated It is raised once per round trip to the server after creation of the control, but

before the page is rendered

DataBinding Occurs when the server control binds to a data source.

DataBound Occurs after the server control binds to a data source.

Disposed Occurs when a server control is released from memory, which is the last stage

of the server control lifecycle when an ASP.NET page is requested

Init Occurs when the server control is initialized, which is the first step in its

lifecycle.

Load Occurs when the server control is loaded into the Page object.

PreRender Occurs after the Control object is loaded but prior to rendering.

Unload Occurs when the server control is unloaded from memory.

Working with AdRotator Control

Create a new web page and place an AdRotator control on it.

112 | P a g e

<form id="form1" runat="server">

 <div>

 <asp:AdRotator ID="AdRotator1" runat="server" AdvertisementFile ="~/ads.xml"

onadcreated="AdRotator1_AdCreated" />

 </div>

</form>

The ads.xml file and the image files should be located in the root directory of the web site.

Try to execute the above application and observe that each time the page is reloaded, the ad is

changed.

 **** END OF UNIT – III ****

113 | P a g e

**** UNIT – IV ****

ADO.NET

ADO.NET is a set of computer software components that programmers can use to
access data and data services from a database. ... ADO.NET is sometimes considered
an evolution of ActiveX Data Objects (ADO) technology, ct.

ADO.NET provides a bridge between the front end controls and the back end database. The

ADO.NET objects encapsulate all the data access operations and the controls interact with these

objects to display data, thus hiding the details of movement of data.

The following figure shows the ADO.NET objects at a glance:

DEFINE

The GridView control displays the values of a data source in a table. Each column represents a

field, while each row represents a record. The GridView control supports the following features:

Binding to data source controls, such as SqlDataSource

The DataSet Class

The dataset represents a subset of the database. It does not have a continuous connection to the

database. To update the database a reconnection is required. The DataSet contains DataTable

objects and DataRelation objects. The DataRelation objects represent the relationship between

two tables.

FAQ: WHAT IS ADO.NET?

FAQ: DEFINE GRID

VIEW IN ASP.NET

AND DATASET

114 | P a g e

Following table shows some important properties of the DataSet class:

Properties Description

CaseSensitive Indicates whether string comparisons within the data tables are case-sensitive.

Container Gets the container for the component.

DataSetName Gets or sets the name of the current data set.

DefaultViewManager Returns a view of data in the data set.

DesignMode Indicates whether the component is currently in design mode.

EnforceConstraints Indicates whether constraint rules are followed when attempting any update

operation.

Events Gets the list of event handlers that are attached to this component.

ExtendedProperties Gets the collection of customized user information associated with the

DataSet.

HasErrors Indicates if there are any errors.

IsInitialized Indicates whether the DataSet is initialized.

Locale Gets or sets the locale information used to compare strings within the table.

Namespace Gets or sets the namespace of the DataSet.

115 | P a g e

Prefix Gets or sets an XML prefix that aliases the namespace of the DataSet.

Relations Returns the collection of DataRelation objects.

Tables Returns the collection of DataTable objects.

The following table shows some important methods of the DataSet class:

Methods Description

AcceptChanges Accepts all changes made since the DataSet was

loaded or this method was called.

BeginInit Begins the initialization of the DataSet. The

initialization occurs at run time.

Clear Clears data.

Clone Copies the structure of the DataSet, including all

DataTable schemas, relations, and constraints.

Does not copy any data.

Copy Copies both structure and data.

CreateDataReader() Returns a DataTableReader with one result set per

DataTable, in the same sequence as the tables

appear in the Tables collection.

CreateDataReader(DataTable[]) Returns a DataTableReader with one result set per

DataTable.

116 | P a g e

EndInit Ends the initialization of the data set.

Equals(Object) Determines whether the specified Object is equal

to the current Object.

Finalize Free resources and perform other cleanups.

GetChanges Returns a copy of the DataSet with all changes

made since it was loaded or the AcceptChanges

method was called.

GetChanges(DataRowState) Gets a copy of DataSet with all changes made

since it was loaded or the AcceptChanges method

was called, filtered by DataRowState.

GetDataSetSchema Gets a copy of XmlSchemaSet for the DataSet.

GetObjectData Populates a serialization information object with

the data needed to serialize the DataSet.

GetType Gets the type of the current instance.

GetXML Returns the XML representation of the data.

GetXMLSchema Returns the XSD schema for the XML

representation of the data.

HasChanges() Gets a value indicating whether the DataSet has

changes, including new, deleted, or modified

rows.

117 | P a g e

HasChanges(DataRowState) Gets a value indicating whether the DataSet has

changes, including new, deleted, or modified

rows, filtered by DataRowState.

IsBinarySerialized Inspects the format of the serialized representation

of the DataSet.

Load(IDataReader, LoadOption, DataTable[]) Fills a DataSet with values from a data source

using the supplied IDataReader, using an array of

DataTable instances to supply the schema and

namespace information.

Load(IDataReader, LoadOption, String[]) Fills a DataSet with values from a data source

using the supplied IDataReader, using an array of

strings to supply the names for the tables within

the DataSet.

Merge() Merges the data with data from another DataSet.

This method has different overloaded forms.

ReadXML() Reads an XML schema and data into the DataSet.

This method has different overloaded forms.

ReadXMLSchema(0) Reads an XML schema into the DataSet. This

method has different overloaded forms.

RejectChanges Rolls back all changes made since the last call to

AcceptChanges.

WriteXML() Writes an XML schema and data from the

DataSet. This method has different overloaded

forms.

118 | P a g e

WriteXMLSchema() Writes the structure of the DataSet as an XML

schema. This method has different overloaded

forms.

The DataTable Class

The DataTable class represents the tables in the database. It has the following important

properties; most of these properties are read only properties except the PrimaryKey property:

Properties Description

ChildRelations Returns the collection of child relationship.

Columns Returns the Columns collection.

Constraints Returns the Constraints collection.

DataSet Returns the parent DataSet.

DefaultView Returns a view of the table.

ParentRelations Returns the ParentRelations collection.

PrimaryKey Gets or sets an array of columns as the primary key for the table.

Rows Returns the Rows collection.

The following table shows some important methods of the DataTable class:

119 | P a g e

Methods Description

AcceptChanges Commits all changes since the last AcceptChanges.

Clear Clears all data from the table.

GetChanges Returns a copy of the DataTable with all changes made since the

AcceptChanges method was called.

GetErrors Returns an array of rows with errors.

ImportRows Copies a new row into the table.

LoadDataRow Finds and updates a specific row, or creates a new one, if not found any.

Merge Merges the table with another DataTable.

NewRow Creates a new DataRow.

RejectChanges Rolls back all changes made since the last call to AcceptChanges.

Reset Resets the table to its original state.

Select Returns an array of DataRow objects.

The DataRow Class

The DataRow object represents a row in a table. It has the following important properties:

120 | P a g e

Properties Description

HasErrors Indicates if there are any errors.

Items Gets or sets the data stored in a specific column.

ItemArrays Gets or sets all the values for the row.

Table Returns the parent table.

The following table shows some important methods of the DataRow class:

Methods Description

AcceptChanges Accepts all changes made since this method was called.

BeginEdit Begins edit operation.

CancelEdit Cancels edit operation.

Delete Deletes the DataRow.

EndEdit Ends the edit operation.

GetChildRows Gets the child rows of this row.

GetParentRow Gets the parent row.

GetParentRows Gets parent rows of DataRow object.

121 | P a g e

RejectChanges Rolls back all changes made since the last call to AcceptChanges.

The DataAdapter Object

The DataAdapter object acts as a mediator between the DataSet object and the database. This

helps the Dataset to contain data from multiple databases or other data source.

The DataReader Object

The DataReader object is an alternative to the DataSet and DataAdapter combination. This

object provides a connection oriented access to the data records in the database. These objects

are suitable for read-only access, such as populating a list and then breaking the connection.

DbCommand and DbConnection Objects

The DbConnection object represents a connection to the data source. The connection could be

shared among different command objects.

The DbCommand object represents the command or a stored procedure sent to the database

from retrieving or manipulating data.

Example

So far, we have used tables and databases already existing in our computer. In this example, we

will create a table, add column, rows and data into it and display the table using a GridView

object.

The source file code is as given:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="createdatabase._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

122 | P a g e

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:GridView ID="GridView1" runat="server">

 </asp:GridView>

 </div>

 </form>

 </body>

</html>

The code behind file is as given:

namespace createdatabase

{

 public partial class _Default : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 DataSet ds = CreateDataSet();

 GridView1.DataSource = ds.Tables["Student"];

 GridView1.DataBind();

 }

 }

 private DataSet CreateDataSet()

 {

 //creating a DataSet object for tables

 DataSet dataset = new DataSet();

 // creating the student table

 DataTable Students = CreateStudentTable();

 dataset.Tables.Add(Students);

 return dataset;

 }

123 | P a g e

 private DataTable CreateStudentTable()

 {

 DataTable Students = new DataTable("Student");

 // adding columns

 AddNewColumn(Students, "System.Int32", "StudentID");

 AddNewColumn(Students, "System.String", "StudentName");

 AddNewColumn(Students, "System.String", "StudentCity");

 // adding rows

 AddNewRow(Students, 1, "M H Kabir", "Kolkata");

 AddNewRow(Students, 1, "Shreya Sharma", "Delhi");

 AddNewRow(Students, 1, "Rini Mukherjee", "Hyderabad");

 AddNewRow(Students, 1, "Sunil Dubey", "Bikaner");

 AddNewRow(Students, 1, "Rajat Mishra", "Patna");

 return Students;

 }

 private void AddNewColumn(DataTable table, string columnType, string columnName)

 {

 DataColumn column = table.Columns.Add(columnName, Type.GetType(columnType));

 }

 //adding data into the table

 private void AddNewRow(DataTable table, int id, string name, string city)

 {

 DataRow newrow = table.NewRow();

 newrow["StudentID"] = id;

 newrow["StudentName"] = name;

 newrow["StudentCity"] = city;

 table.Rows.Add(newrow);

 }

 }

}

When you execute the program, observe the following:

 The application first creates a data set and binds it with the grid view control using the

DataBind() method of the GridView control.

124 | P a g e

 The Createdataset() method is a user defined function, which creates a new DataSet

object and then calls another user defined method CreateStudentTable() to create the

table and add it to the Tables collection of the data set.

 The CreateStudentTable() method calls the user defined methods AddNewColumn() and

AddNewRow() to create the columns and rows of the table as well as to add data to the

rows.

When the page is executed, it returns the rows of the table as shown:

ASP.NET allows the following sources of data to be accessed and used:

 Databases (e.g., Access, SQL Server, Oracle, MySQL)

 XML documents

 Business Objects

 Flat files

ASP.NET hides the complex processes of data access and provides much higher level of classes

and objects through which data is accessed easily. These classes hide all complex coding for

connection, data retrieving, data querying, and data manipulation.

ADO.NET is the technology that provides the bridge between various ASP.NET control objects

and the backend data source. In this tutorial, we will look at data access and working with the

data in brief.

Retrieve and display data

It takes two types of data controls to retrieve and display data in ASP.NET:

 A data source control - It manages the connection to the data, selection of data, and

other jobs such as paging and caching of data etc.

FAQ: EXPLAIN ADO.NET

TECNOLOGY WITH SIUTABLE

EXAMPLES

125 | P a g e

 A data view control - It binds and displays the data and allows data manipulation.

We will discuss the data binding and data source controls in detail later. In this section, we will

use a SqlDataSource control to access data and a GridView control to display and manipulate

data in this chapter.

We will also use an Access database, which contains the details about .Net books available in

the market. Name of our database is ASPDotNetStepByStep.mdb and we will use the data table

DotNetReferences.

The table has the following columns: ID, Title, AuthorFirstName, AuthorLastName, Topic, and

Publisher.

Here is a snapshot of the data table:

Let us directly move to action, take the following steps:

(1) Create a web site and add a SqlDataSourceControl on the web form.

(2) Click on the Configure Data Source option.

126 | P a g e

(3) Click on the New Connection button to establish connection with a database.

(4) Once the connection is set up, you may save it for further use. At the next step, you are

asked to configure the select statement:

127 | P a g e

(5) Select the columns and click next to complete the steps. Observe the WHERE, ORDER BY,

and the Advanced buttons. These buttons allow you to provide the where clause, order by

clause, and specify the insert, update, and delete commands of SQL respectively. This way, you

can manipulate the data.

(6) Add a GridView control on the form. Choose the data source and format the control using

AutoFormat option.

(7) After this the formatted GridView control displays the column headings, and the application

is ready to execute.

(8) Finally execute the application.

128 | P a g e

The content file code is as given:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="dataaccess.aspx.cs"

 Inherits="datacaching.WebForm1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"

 ConnectionString= "<%$

ConnectionStrings:ASPDotNetStepByStepConnectionString%>"

 ProviderName= "<%$ ConnectionStrings:

 ASPDotNetStepByStepConnectionString.ProviderName %>"

 SelectCommand="SELECT [Title], [AuthorLastName],

 [AuthorFirstName], [Topic] FROM [DotNetReferences]">

 </asp:SqlDataSource>

129 | P a g e

 <asp:GridView ID="GridView1" runat="server"

 AutoGenerateColumns="False" CellPadding="4"

 DataSourceID="SqlDataSource1" ForeColor="#333333"

 GridLines="None">

 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />

 <Columns>

 <asp:BoundField DataField="Title" HeaderText="Title"

 SortExpression="Title" />

 <asp:BoundField DataField="AuthorLastName"

 HeaderText="AuthorLastName" SortExpression="AuthorLastName" />

 <asp:BoundField DataField="AuthorFirstName"

 HeaderText="AuthorFirstName" SortExpression="AuthorFirstName" />

 <asp:BoundField DataField="Topic"

 HeaderText="Topic" SortExpression="Topic" />

 </Columns>

 <FooterStyle BackColor="#5D7B9D"

 Font-Bold="True" ForeColor="White" />

 <PagerStyle BackColor="#284775"

 ForeColor="White" HorizontalAlign="Center" />

 <SelectedRowStyle BackColor="#E2DED6"

 Font-Bold="True" ForeColor="#333333" />

 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True"

 ForeColor="White" />

 <EditRowStyle BackColor="#999999" />

 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />

 </asp:GridView>

 </div>

 </form>

 </body>

</html>

A data source control interacts with the data-bound controls and hides the complex data binding

processes. These are the tools that provide data to the data bound controls and support execution

of operations like insertions, deletions, sorting, and updates.

Each data source control wraps a particular data provider-relational databases, XML documents,

or custom classes and helps in:

130 | P a g e

 Managing connection

 Selecting data

 Managing presentation aspects like paging, caching, etc.

 Manipulating data

There are many data source controls available in ASP.NET for accessing data from SQL Server,

from ODBC or OLE DB servers, from XML files, and from business objects.

Based on type of data, these controls could be divided into two categories:

 Hierarchical data source controls

 Table-based data source controls

The data source controls used for hierarchical data are:

 XMLDataSource - It allows binding to XML files and strings with or without schema

information.

 SiteMapDataSource - It allows binding to a provider that supplies site map information.

The data source controls used for tabular data are:

Data source controls Description

SqlDataSource It represents a connection to an ADO.NET data provider that returns SQL

data, including data sources accessible via OLEDB and ODBC.

ObjectDataSource It allows binding to a custom .Net business object that returns data.

LinqdataSource It allows binding to the results of a Linq-to-SQL query (supported by

ASP.NET 3.5 only).

AccessDataSource It represents connection to a Microsoft Access database.

Data Source Views

Data source views are objects of the DataSourceView class. Which represent a customized view

of data for different data operations such as sorting, filtering, etc.

131 | P a g e

The DataSourceView class serves as the base class for all data source view classes, which

define the capabilities of data source controls.

The following table provides the properties of the DataSourceView class:

Properties Description

CanDelete Indicates whether deletion is allowed on the underlying data source.

CanInsert Indicates whether insertion is allowed on the underlying data source.

CanPage Indicates whether paging is allowed on the underlying data source.

CanRetrieveTotalRowCount Indicates whether total row count information is available.

CanSort Indicates whether the data could be sorted.

CanUpdate Indicates whether updates are allowed on the underlying data source.

Events Gets a list of event-handler delegates for the data source view.

Name Name of the view.

The following table provides the methods of the DataSourceView class:

Methods Description

CanExecute Determines whether the specified command can be executed.

ExecuteCommand Executes the specific command.

132 | P a g e

ExecuteDelete Performs a delete operation on the list of data that the

DataSourceView object represents.

ExecuteInsert Performs an insert operation on the list of data that the

DataSourceView object represents.

ExecuteSelect Gets a list of data from the underlying data storage.

ExecuteUpdate Performs an update operation on the list of data that the

DataSourceView object represents.

Delete Performs a delete operation on the data associated with the view.

Insert Performs an insert operation on the data associated with the view.

Select Returns the queried data.

Update Performs an update operation on the data associated with the view.

OnDataSourceViewChanged Raises the DataSourceViewChanged event.

RaiseUnsupportedCapabilitiesError Called by the RaiseUnsupportedCapabilitiesError method to compare

the capabilities requested for an ExecuteSelect operation against

those that the view supports.

The SqlDataSource Control

The SqlDataSource control represents a connection to a relational database such as SQL Server

or Oracle database, or data accessible through OLEDB(Object Linking Embedding Database)

or Open Database Connectivity (ODBC). Connection to data is made through two important

properties ConnectionString and ProviderName.

The following code snippet provides the basic syntax of the control:

FAQ: WHAT IS OLEDB?

133 | P a g e

<asp:SqlDataSource runat="server" ID="MySqlSource"

 ProviderName='<%$ ConnectionStrings:LocalNWind.ProviderName %>'

 ConnectionString='<%$ ConnectionStrings:LocalNWind %>'

 SelectionCommand= "SELECT * FROM EMPLOYEES" />

<asp:GridView ID="GridView1" runat="server" DataSourceID="MySqlSource" />

Configuring various data operations on the underlying data depends upon the various properties

(property groups) of the data source control.

The following table provides the related sets of properties of the SqlDataSource control, which

provides the programming interface of the control:

Property Group Description

DeleteCommand,

DeleteParameters,

DeleteCommandType

Gets or sets the SQL statement, parameters, and type for deleting rows in the

underlying data.

FilterExpression,

FilterParameters

Gets or sets the data filtering string and parameters.

InsertCommand,

InsertParameters,

InsertCommandType

Gets or sets the SQL statement, parameters, and type for inserting rows in the

underlying database.

SelectCommand,

SelectParameters,

SelectCommandType

Gets or sets the SQL statement, parameters, and type for retrieving rows from

the underlying database.

SortParameterName Gets or sets the name of an input parameter that the command's stored

procedure will use to sort data.

UpdateCommand,
Gets or sets the SQL statement, parameters, and type for updating rows in the

underlying data store.

134 | P a g e

UpdateParameters,

UpdateCommandType

The following code snippet shows a data source control enabled for data manipulation:

<asp:SqlDataSource runat="server" ID= "MySqlSource"

 ProviderName='<%$ ConnectionStrings:LocalNWind.ProviderName %>'

 ConnectionString=' <%$ ConnectionStrings:LocalNWind %>'

 SelectCommand= "SELECT * FROM EMPLOYEES"

 UpdateCommand= "UPDATE EMPLOYEES SET LASTNAME=@lame"

 DeleteCommand= "DELETE FROM EMPLOYEES WHERE EMPLOYEEID=@eid"

 FilterExpression= "EMPLOYEEID > 10">

</asp:SqlDataSource>

The ObjectDataSource Control

The ObjectDataSource Control enables user-defined classes to associate the output of their

methods to data bound controls. The programming interface of this class is almost same as the

SqlDataSource control.

Following are two important aspects of binding business objects:

 The bindable class should have a default constructor, it should be stateless, and have

methods that can be mapped to select, update, insert, and delete semantics.

 The object must update one item at a time, batch operations are not supported.

Let us go directly to an example to work with this control. The student class is the class to be

used with an object data source. This class has three properties: a student id, name, and city. It

has a default constructor and a GetStudents method for retrieving data.

The student class:

public class Student

{

 public int StudentID { get; set; }

FAQ: DEFINE CONNECTIONSTRING, PROVIDER

NAME AND SQL COMMAND

135 | P a g e

 public string Name { get; set; }

 public string City { get; set; }

 public Student()

 { }

 public DataSet GetStudents()

 {

 DataSet ds = new DataSet();

 DataTable dt = new DataTable("Students");

 dt.Columns.Add("StudentID", typeof(System.Int32));

 dt.Columns.Add("StudentName", typeof(System.String));

 dt.Columns.Add("StudentCity", typeof(System.String));

 dt.Rows.Add(new object[] { 1, "M. H. Kabir", "Calcutta" });

 dt.Rows.Add(new object[] { 2, "Ayan J. Sarkar", "Calcutta" });

 ds.Tables.Add(dt);

 return ds;

 }

}

Take the following steps to bind the object with an object data source and retrieve data:

 Create a new web site.

 Add a class (Students.cs) to it by right clicking the project from the Solution Explorer,

adding a class template, and placing the above code in it.

 Build the solution so that the application can use the reference to the class.

 Place an object data source control in the web form.

 Configure the data source by selecting the object.

136 | P a g e

 Select a data method(s) for different operations on data. In this example, there is only

one method.

 Place a data bound control such as grid view on the page and select the object data

source as its underlying data source.

 At this stage, the design view should look like the following:

137 | P a g e

 Run the project, it retrieves the hard coded tuples from the students class.

The AccessDataSource Control

The AccessDataSource control represents a connection to an Access database. It is based on the

SqlDataSource control and provides simpler programming interface. The following code

snippet provides the basic syntax for the data source:

<asp:AccessDataSource ID="AccessDataSource1 runat="server"

 DataFile="~/App_Data/ASPDotNetStepByStep.mdb" SelectCommand="SELECT * FROM

[DotNetReferences]">

</asp:AccessDataSource>

The AccessDataSource control opens the database in read-only mode. However, it can also be

used for performing insert, update, or delete operations. This is done using the ADO.NET

commands and parameter collection.

Updates are problematic for Access databases from within an ASP.NET application because an

Access database is a plain file and the default account of the ASP.NET application might not

have the permission to write to the database file.

**** END OF UNIT- IV ****

138 | P a g e

 **** UNIT – V ****

DATA BINDING

Every ASP.NET web form control inherits the DataBind method from its parent Control class,

which gives it an inherent capability to bind data to at least one of its properties. This is known

as simple data binding or inline data binding.

Simple data binding involves attaching any collection (item collection) which implements the

IEnumerable interface, or the DataSet and DataTable classes to the DataSource property of the

control.

On the other hand, some controls can bind records, lists, or columns of data into their structure

through a DataSource control. These controls derive from the BaseDataBoundControl class.

This is called declarative data binding.

The data source controls help the data-bound controls implement functionalities such as,

sorting, paging, and editing data collections.

The BaseDataBoundControl is an abstract class, which is inherited by two more abstract

classes:

 DataBoundControl

 HierarchicalDataBoundControl

The abstract class DataBoundControl is again inherited by two more abstract classes:

 ListControl

 CompositeDataBoundControl

The controls capable of simple data binding are derived from the ListControl abstract class and

these controls are:

 BulletedList

 CheckBoxList

 DropDownList

 ListBox

 RadioButtonList

The controls capable of declarative data binding (a more complex data binding) are derived

from the abstract class CompositeDataBoundControl. These controls are:

FAQ: DEFINE DATA

BINDING

FAQ: EXPLAIN THE DIFFERENT TYPES

OF DATABINDINGIN DETAIL

139 | P a g e

 DetailsView

 FormView

 GridView

 RecordList

Simple Data Binding

Simple data binding involves the read-only selection lists. These controls can bind to an array

list or fields from a database. Selection lists takes two values from the database or the data

source; one value is displayed by the list and the other is considered as the value corresponding

to the display.

Let us take up a small example to understand the concept. Create a web site with a bulleted list

and a SqlDataSource control on it. Configure the data source control to retrieve two values from

your database (we use the same DotNetReferences table as in the previous chapter).

Choosing a data source for the bulleted list control involves:

 Selecting the data source control

 Selecting a field to display, which is called the data field

 Selecting a field for the value

When the application is executed, check that the entire title column is bound to the bulleted list

and displayed.

140 | P a g e

Declarative Data Binding

We have already used declarative data binding in the previous tutorial using GridView control.

The other composite data bound controls capable of displaying and manipulating data in a

tabular manner are the DetailsView, FormView, and RecordList control.

In the next tutorial, we will look into the technology for handling database, i.e, ADO.NET.

However, the data binding involves the following objects:

 A dataset that stores the data retrieved from the database.

 The data provider, which retrieves data from the database by using a command over a

connection.

 The data adapter that issues the select statement stored in the command object; it is also

capable of update the data in a database by issuing Insert, Delete, and Update

statements.

Relation between the data binding objects:

141 | P a g e

Example

Let us take the following steps:

Step (1) : Create a new website. Add a class named booklist by right clicking on the solution

name in the Solution Explorer and choosing the item „Class‟ from the „Add Item‟ dialog box.

Name it as booklist.cs.

using System;

using System.Data;

using System.Configuration;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

namespace databinding

{

 public class booklist

 {

 protected String bookname;

 protected String authorname;

 public booklist(String bname, String aname)

 {

 this.bookname = bname;

 this.authorname = aname;

 }

 public String Book

 {

 get

 {

 return this.bookname;

 }

 set

142 | P a g e

 {

 this.bookname = value;

 }

 }

 public String Author

 {

 get

 {

 return this.authorname;

 }

 set

 {

 this.authorname = value;

 }

 }

 }

}

Step (2) : Add four list controls on the page a list box control, a radio button list, a check box

list, and a drop down list and four labels along with these list controls. The page should look

like this in design view:

The source file should look as the following:

<form id=”form1” runat=”server”>

 <div>

143 | P a g e

 <table style=”width: 559px”>

 <tr>

 <td style=”width: 228px; height: 157px;”>

 <asp:ListBox ID=”ListBox1” runat=”server” AutoPostBack=”True”

 OnSelectedIndexChanged=”ListBox1_SelectedIndexChanged”>

 </asp:ListBox>

 </td>

 <td style=”height: 157px”>

 <asp:DropDownList ID=”DropDownList1” runat=”server”

 AutoPostBack=”True”

OnSelectedIndexChanged=”DropDownList1_SelectedIndexChanged”>

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td style=”width: 228px; height: 40px;”>

 <asp:Label ID=”lbllistbox” runat=”server”></asp:Label>

 </td>

 <td style=”height: 40px”>

 <asp:Label ID=”lbldrpdown” runat=”server”>

 </asp:Label>

 </td>

 </tr>

 <tr>

 <td style=”width: 228px; height: 21px”>

 </td>

 <td style=”height: 21px”>

 </td>

 </tr>

 <tr>

 <td style=”width: 228px; height: 21px”>

 <asp:RadioButtonList ID=”RadioButtonList1” runat=”server”

144 | P a g e

 AutoPostBack=”True”

OnSelectedIndexChanged=”RadioButtonList1_SelectedIndexChanged”>

 </asp:RadioButtonList>

 </td>

 <td style=”height: 21px”>

 <asp:CheckBoxList ID=”CheckBoxList1” runat=”server”

 AutoPostBack=”True”

OnSelectedIndexChanged=”CheckBoxList1_SelectedIndexChanged”>

 </asp:CheckBoxList>

 </td>

 </tr>

 <tr>

 <td style=”width: 228px; height: 21px”>

 <asp:Label ID=”lblrdlist” runat=”server”>

 </asp:Label>

 </td>

 <td style=”height: 21px”>

 <asp:Label ID=”lblchklist” runat=”server”>

 </asp:Label>

 </td>

 </tr>

 </table>

 </div>

</form>

Step (3) : Finally, write the following code behind routines of the application:

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Ilist bklist = createbooklist();

 if (!this.IsPostBack)

 {

 this.ListBox1.DataSource = bklist;

 this.ListBox1.DataTextField = “Book”;

145 | P a g e

 this.ListBox1.DataValueField = “Author”;

 this.DropDownList1.DataSource = bklist;

 this.DropDownList1.DataTextField = “Book”;

 this.DropDownList1.DataValueField = “Author”;

 this.RadioButtonList1.DataSource = bklist;

 this.RadioButtonList1.DataTextField = “Book”;

 this.RadioButtonList1.DataValueField = “Author”;

 this.CheckBoxList1.DataSource = bklist;

 this.CheckBoxList1.DataTextField = “Book”;

 this.CheckBoxList1.DataValueField = “Author”;

 this.DataBind();

 }

 }

 protected Ilist createbooklist()

 {

 ArrayList allbooks = new ArrayList();

 booklist bl;

 bl = new booklist(“UNIX CONCEPTS”, “SUMITABHA DAS”);

 allbooks.Add(bl);

 bl = new booklist(“PROGRAMMING IN C”, “RICHI KERNIGHAN”);

 allbooks.Add(bl);

 bl = new booklist(“DATA STRUCTURE”, “TANENBAUM”);

 allbooks.Add(bl);

 bl = new booklist(“NETWORKING CONCEPTS”, “FOROUZAN”);

 allbooks.Add(bl);

 bl = new booklist(“PROGRAMMING IN C++”, “B. STROUSTROUP”);

 allbooks.Add(bl);

 bl = new booklist(“ADVANCED JAVA”, “SUMITABHA DAS”);

 allbooks.Add(bl);

146 | P a g e

 return allbooks;

 }

 protected void ListBox1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lbllistbox.Text = this.ListBox1.SelectedValue;

 }

 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lbldrpdown.Text = this.DropDownList1.SelectedValue;

 }

 protected void RadioButtonList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lblrdlist.Text = this.RadioButtonList1.SelectedValue;

 }

 protected void CheckBoxList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lblchklist.Text = this.CheckBoxList1.SelectedValue;

 }

}

Observe the following:

 The booklist class has two properties: bookname and authorname.

 The createbooklist method is a user defined method that creates an array of booklist

objects named allbooks.

 The Page_Load event handler ensures that a list of books is created. The list is of Ilist

type, which implements the Ienumerable interface and capable of being bound to the list

controls. The page load event handler binds the Ilist object „bklist‟ with the list controls.

The bookname property is to be displayed and the authorname property is considered as

the value.

 When the page is run, if the user selects a book, its name is selected and displayed by the

list controls whereas the corresponding labels display the author name, which is the

corresponding value for the selected index of the list control.

147 | P a g e

SINGLE VALUE DATA BINDING

Simple control data binding refers to the process of binding a single value to a property of a

control-for instance, binding form controls like textboxes, checkboxes, radio buttons, or

selected values of list controls to individual data or object values.

Asp.net single value data binding example – using variable

asp.net single value data binding – using variable

D a t a B i n d i n g E x a m p l e . a s p x

<%@ Page Language=”C#” AutoEventWireup=”true”

CodeFile=”DataBindingExample.aspx.cs” Inherits=”DataBindingExample” %>

<!DOCTYPE html>

<html xmlns=”http://www.w3.org/1999/xhtml”>

FAQ: EXPLAIN SINGLE

VALUE DATA BINDING

148 | P a g e

<head runat=”server”>

 <title>asp.net single value data binding example: using variable</title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <h2 style=”color:Teal”>Example: Single Value Data Binding [Using Variable]</h2>

 <asp:Label ID=”Label1” runat=”server” Font-Size=”Large” Font-Italic=”true”

ForeColor=”Crimson”>

 User ID: <%# UserID %>

 UserName: <%# UserName %>

 City: <%# City %>

 </asp:Label>

 </div>

 </form>

</body>

</html>

D a t a B i n d i n g E x a m p l e . a s p x . c s

using System;

using System.Collections;

149 | P a g e

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

public partial class DataBindingExample : System.Web.UI.Page

{

 public int UserID;

 public string UserName;

 public string City;

 protected void Page_Load(object sender, EventArgs e)

 {

 UserID = 1;

 UserName = “Jones”;

150 | P a g e

 City = “Rome”;

 }

}

Repeated-Value Data Binding

To use repeated-value binding, you link one of these controls to a data source (such as a field

in a data table). When you call DataBind(), the control automatically creates a full list using all

the corresponding values.

Although using simple data binding is optional, repeated-value binding is so useful that almost

every ASP.NET application will want to use it somewhere.

Repeated-value data binding works with the ASP.NET list controls (and the rich data controls

described in the next chapter). To use repeated-value binding, you link one of these controls to a

data source (such as a field in a data table). When you call DataBind(), the control automatically

creates a full list using all the corresponding values. This saves you from writing code that loops

through the array or data table and manually adds elements to a control.

Repeated-value binding can also simplify your life by supporting advanced formatting and

template options.

*** END OF UNIT – V ***

***** ALLTHE BEST *****

DESCRIBE REPEATED-VALUE

DATABINDINGIN DETAIL

http://asp.net/
http://asp.net/

