e aoiiant, ' T | T T . T el .

1 () LR *‘

Set U T2 o cotieeron op Q-

AetThea  ubjoct g .

lﬁl b %tt QI I'q qr}

-

| L '\Hmm_!?mw o mathomattcs boat W ouy

mn fmt‘! } ; e TN T &

O\t lan m{. \r)-s'“?n-{?ani Hraedontg lmh o

¢\ en 8¢ ~ 0O T ¢ vou Q. Ry -

LY
[

.Qt‘\‘%% T i

N CR TG fery SR Oteronk In

D ¢ alga 'n B

NSS! R: Ju2.2en}

ALR : 9

UNton -

AUR {?/'tc/\ o UCES_Z‘

A - {1;0:?:} s S{UQfBI_‘T}l ;

Twtergs cTion 2

Scanned by TapScanner



® §
DIFFERENCE -
| A-Bs {x | xen and xd B .
A= 5‘4’11 2%  5%= {tr'g,ﬁ-;‘l‘}
A-B= 233} . i %
CPrTECION  PRapuCT - DR Gei
Ax R -{Q1; » [ aen, beB} ‘
Az S E% . g:{g,‘?}

AVB:{(!,sj CFit). C2s) f‘-'?-;'f')}.

%rUN(‘_TI@N -

A and R ax@ - . ko nﬁﬂ-Qmpii

Sees 16 we  deffre A Funcifon  §t A3k

Suth ¥oat dew evevy  Steropk TN A

‘a.cg?gn to anigue  elemept 1IN B
A = {‘r«‘ir-%} B> Sa,b}

$. AEB cté%i’néd Qs .

INz-qr D -y KAD:b.

Scanned by TapScanner



- A - E—arw

o
tre  elemat hay 3 ‘o The  eclomant & hos
?mqgn.g. ho ?n,c:haq. "

at S not b
& fenthon.

';Dne- Ong

FuncTton :-
£ A9 18 gafd 4 be
Ve te one ¥ for  €v¢¥y  plermont TN A

clemeni: B s

> Jta)l £ > adb.

fox any oclemont YeE D $0:ogy =
XeA -

Scanned by TapScanner



@'JKCTIGN o

L: A-B 14

Lz

h?jctff Poryn M

f Vi ¢

! 3N CHeon §
| |
)

E
a

Scanned by TapSéanner



& ' Foufvalent  bets - s
T BCES A ond B

Qe 5‘1? 8 89 be 50% Cl'.'r uj;/q tont. ?ﬂ

Yo Q‘I?ggg a. b?f 0{._.1?01'1 :j A7

A r{l.Qrg,.k . } % 4
B - {_*“'g"?’"“} i

f:- A= B de4fned  as fm=-h, ¥ o

C bhoctYon -

H e co A and £ a7c CQufvalene

Counkably  NJfnTe :-

eqQui valenk PN 7Y

‘Qi - CQcUHCIHt} ?uf?n?fg .

Scanned by TapScanner



! ™ prove bhhat =« ?Q Coun +ably

LQK e Sﬁti‘, iﬁ"b-l}

Vo  ni

D ¢ P ole PTned el  J(n) = ° <

> l:L?'r"'I ?3_
3 o otfection. = 9

4 ?S Qqu?v&!em—. Yo N

oL ?9' ; COunt a(bla FV) Fi‘ rﬁ to .

Coun TPRLE Sete -

A g@_jg A Te Qa3 to Be

Ji
|
|

COuncable 1§ T&  Ts g%tk o

Counkablyy  Ffinite

- .
{l) ':31:{1‘_2!2,..‘# 5‘0} Tiﬂg d?ﬂ?b—@

1< Obvio wely .

doke 42w a9 countobte | ePnSLe .
\ =

NoTE

e

Scanned by TapScanner



fv@'ﬁ‘g G T2 €y a | w(m%!e e 3 ffg

Countoplo -

¢« B be o wureoble ond € M

Case - (W) --

Mozt e talce next Tast nymber
Cna € A Sudp that  Qpg €B .

Pruedihg  ghe 493, we ger
I Y %ﬂ' . 01}2 i Gng T 1

Hente  an e clomente o B avw lablyf
L T Lurighly Safnite.

E\JQ-!—%. éﬁbg@, % o C@‘-L"-?GUQ bor s
(ecandabte -

Scanned by TapSca‘nner




70 prove jag¥els * @4 e - (ounioble

1
?mﬁf? ID* - {P;q{ [ Pyt © and C{/:fo'}_

® Fr8e  we Loxe pog"i’.\:?v@ 0470 0 0

Numbore  uhoge  Numorgkoy  and  denominod ¥

Il-i
i
g
oo
S

f&dd uple &

{ ‘/l}

e Qo on'yyg one NnambhoY ")Gﬂ’théo

NOYt we Fake | pocTePve. atfovn al
DU onss whoee N wer Qo and  Aonorefnak
add upio 19,

; . | Fye
o gm bh("lf} V5g % nwnbor icam .Q(,E

{l/‘.'l / gfi } | J |

nNexk  we ake oS Py sciPon o

Nem boss | 1o :
noR - Vumevarey  and denominate

add UpPo 4.

e rhw"-? '[l/‘?,' 3"[ r ?rg}
20 eod g - |Pee +H P (an
= e " 'P.?E. O

0 | :
a Be gt Tue VYo N Numbers  gao

the boca?nh?n% ko Bm?ﬁ:ﬂ—)c} ewh0ge e 2
| oL0
Te TR Pe ated ONo -

H'Qﬂ(‘_ﬂ U
ok |
5. ’f o g Ly 3 L8

Scanned by TapScnner



wounaple

1 O wy lake a:{br jqj"' jqur}
Now — we take dopfped J:pny s q byj

/

. (O = o . $(2n> = q, « £n4p) .- = s

Henee ¢ Ta bctfon.

s

Honce ®@ 18 equivalent o N

& Ia (Ontably fr\f ‘nite,

oovern = 1O pyove  thak Ny e (wunktablo .

NRIL:  Wwe  Eape

Scanned by TapScanner



S

il il .|_--.-.--\.—---—--—---l--—J

Now V) take C;’,j)E NN St Ehot

3 J

—(

ve hayvo {(l;?) -(9y2) (% D}

p“cr{) e d rh? @ g Le W ean (Vo .I-:-:

:M an e elornonNt S 0F NYN,

NY N \e tounkably  Inffrite .

NYN 1 Counkable -

¢ (3
lev A, B ax COWNE adp ! 304 ¢ Fen P\

A

Axa 18 countable .

0 Ie ogoccmMmoE Lot A and B Are

countably  T0fPrT ko - !
e d@#ﬁ"\@' L INYN =S AXEB - bs

'}(?r ?') = CC['I- | bj")

Ak \afrg  thHot F e o bifoeion .
dypmy 0 o= (pay) € NN Andf | 8

= Curv) € NYN

Now |
) = WYY o CC{P, ba) < CCRUL, by)

=% Qap = Ca bg = bv

'::> P';:UL and q/:v

il L i ik

=5 (P a) = (unw)

= e - Ld )

= i e i O R 7 v

— i
Scanned by TapScanner




| i

| Now,  8uppoee (O, Qn) & AXE.
Thon (en) € nxn  Gnd fimm:= (Qe &)
. e oOnto.
4— ?_g b%ﬁc(}?en.
Honce AXR fs Qq.ﬁumwk o NYW
Whidhy te  wuntable -
Hence AYB IS teuntahle
™ =
TWEO Jet A bo o- Cetnrably infrenkte %
N ‘
and F be O ™APPING gy A oOnio B bhon
R 18 COUNEGhlo .
Pwxoof :-
ot A b0 A (ountaply  dinilg
SCk Anad £+ A E IS cnNgo .
Ly be B Sudh Hhaot QeAh,
thore  exaets Ata) =b C- 4 Te ont)
NO (e C'\'?'Fﬁnq 8: B ._‘,.B Suecda B at
80??% = Ao
B s cqQufvalent & @ Subeock
0o Hhe Louwntabie sck Ao .
B Ts  Couryable

Scanned _by TapScanner



T r——— 4
ountable unfon  of (ounpaple SRk g
oL Ew -

. (Gantable - f
Al
YTy ¥
D
t E N {AHAQ,M 3 be a

(a0 (1Y :-

e p——

= £

L

Qb Anfsume A Y aAYo atl COUNLA

1N Py ke ST &X

 Now ve  detfne  that 3. NxN AR

detined oo JG D> age
J "
(10 oo ltj 4 iog Chto .

Plgo Vx) thoo ven, H{Q

coantably  Mifnfie.

HoeNe b(J Wooyom I\t , UAH ©
ﬁﬂffﬂ_;_{»g .

B—— - c——r AT AR 1 R . ——

Scanned by TapScanner



Cage (1) - & | N

a?\ | |64

oY  eath ot ch 00c0 A Qot RS

eath AY. be  couptable.

Cuach  thab R 'e Q. antably  N4infLe

Yl 8 and Ap

hen  yA; ¢ uB;

p,s cage () URY s Counkab Ly Pndinile

J

A thowp  #Heover, , Every  Sdbelt (g

O

o (ounraple ST S B countGplo.

Uai P (ountable

ONOUNTARL E Sets

A QOX which T2 ot

able.-

count able fa  calted  uncount

Fou !l Ky & F-Q N wueniable

W\ GOLE vl
e 1o pvve  Yhor (0] T uncountable

l“"‘nf‘ﬁf

fuvery a€al  humbey TN (6 1]
can  be  wyipeon tth?ql..tclg ag o non -
jen t\’ﬁ\i"}fiﬂ‘h% dec’m A 0. G Qg Ry .. " wheye
0 £ ay £ 9.

A0 1O WY nq ~e eEyTe Hons that Gny tev mIH Qﬁ'ﬂg

dectmal 0.Q,Q0 .... Qnooooo.. ... s wWHeN Gy

Scanned by TapS_canner



} 0. qu,?“'" (Qn-—\) ‘H‘i’?f i &

o :
Suppege.  (0,1) ¢ Countaple. i

S S
From Ay b

|
1, Ik
.

NOw we  can lawolied at the C (oMot

1-Q ., By, Ha; KXol . W Wy
[ whevyo L' Oy 'Q” 0L|Q ’119--~-

Xg = Oy 0y, Qgyg Apgy ..

|
i
i

1

3 O- O"ht ar)g c“ﬂa """ 1.

NOw i upE €Ak p@g‘?tf’vé ) ntegevre n :
choowe  an PNtegoas be  am br, 2 th :-'
Hoak CoE |
‘ |

by - 5 Gon £ i

O ;

Gz lrf G.nn ) s

'Q} H < O . b] bQ bg .....

tlcﬂarrtg 4 ¢ (o, lj i

1

Hon o )
97 ¥ fov  eack g P
»
tln T i | F
1 Wnter o @rc bron. (-E‘}(?)
OU ¥ G.Q,(umphboh E@ UJ'?’OOC?)

"Hoour Iable

Scanned by TapSéanner



1Qt we  kake (0,1 ] Cp.

we know  Lhoar Ln, [-J fa

UN O untraple

A Supovser g UnWUNtapble btk

?Q LWhcountaplo -

L Unceuntaply -

o pyove g & uncountap (o -

let R - QLS.

e tneaw  hax ® 19 ount able .

Guppote  ® & untapte
cd | 9 ?_S',. couvntiable .

But by  (thooem \-1) 2 Po AN cOUn kbl .

Lﬂhi}(‘h ?9 Nt {\d‘hf"ﬂﬁh ‘

‘ 0
i g 13 UnNconuntabte

Scanned by TapScanner




5
Gf"’j :{ME@f.Jﬁ LTV E @ OF Flew DER AND |
THEOREM
.
\+9 ot Dge g QupL ity ;-
18 Py | and a, s
thaot -..]....4. A ~ 1 thon .,
P9
' h
N 7 P
p
1 \a‘;b,‘ £ [ Z ‘ﬂfli) AL
‘F:* f o f:l =1
wheye a4y ag, ... Qn  and b, h,,
avoe  wveal nNumbkerg
Proo s
Ffvat we Chan PYOove T fﬂQQ\uaif '3‘
\/p \/av !
x 2 & 4
9 e | Tk T e wh oxC T?;O and 9}0‘4
P 9
Thie fn@?umﬂ_g te  IRTa) _:;
i el o O y:-o. |
MOW \OY %, Y >0
©
G svdor e Superion
g : '
IS E Dkt Ao ahgpe M- L
P
L3O
THAN . 4y =
47LE) &2 % _
')
= X (1: - “)
Y 2 4. so

Scanned by TapScnner



|
. A\ge . 4 Yo fon OLt Ly - Gnd
$'Ce) <o) fov 0 Y.,
ICH) Lo 4oy Qb tho and P
Paattcu an 4 (1-) P
Y
x \ Y '
(-—9-) - X C.g') AN O
_1* '
X P
('{;) - __L(l)'*-—!r—‘_{t).
p o
" !L‘-‘J ?
3) % %
0 Muttipyin g by Yy Wwe gat
Lo |
’ O"/P '/fb g - S | |
Mooyt x Y Sy ( e e & )
8 . O R v P ¢
L
Now 40 prove  Hotaew's  Thequality,
we  apply the  akove inequalfty o the
Noumbews. . |
| laj | [ b; ) .
x.- o . g - 2 p— #Q'T'
| n P (31 . a each
i \GLT‘ ¥ “!:r l "
L& i = J-t2:0
we  get
ae . , ‘
= | J\ ‘bf’. ‘m i Z. ?.E'_ t ..':.’i.
= ' 37 L P 4
g v [ 2 : a
(f_ (! }” ‘:,H’"Jw
i..:l e . .
or o0y Feit, 9,000 M,

Scanned by TapScanner



(S, W [ ———— T

Addfng  thece Thequatitfes — we  get

n
‘5? lQ1‘ IBJ-.] n ']:‘? 'E-j
e ¢ Z =4 —-!.J
¥ ' n Q,F’ B prk P 9 /3
n — % |
dé | a] P] v (!_ir “”I‘ - (N3
1 =% - 5
Now : A _
" : 0 - " 1
£ (Ei-{ 3) ::__‘_( 2. O(J>4_'_( £ [d;)
o) P 9 P -3I- Y %
" .
P -
) ( ffr a5 ) . ..,[‘ (bjlp )
B o -— —_— J =N
" £ la'ﬂlf; cein (Lh P
£ 54 | %1 [bs

'}

\

CG‘VOUG‘T(J" k(&uc_tnﬂ - CLuJCra-; ?F"‘Qquq{ﬂﬂ)

- - b ! N _ =
Z lajb] 2 ?’l ‘G;ll]"' [«i -“9.“9] ;
i) il = 1‘-‘-1

Proe

TGQke P - G - 2 n Holagexy 'e

Scanned by TapScanner



. : ) ; :
Mintowera ¢ IneQuaitty :-
.—-—"—'_"_:=__

t..-—-—-"-__-.- -1

P, t
" ' " pP [h j'fio
{?L a1 ") [.2/’ a7 (£,
=t —
. i

| h ' ,§F’-t)4 ‘i
. P]; RCARILD '
z [P 1.1 .. [qp” 1
(p-1)e 2
" v
"[.:“f 1o | :' [ (ot #1o1) J

= | (u_nfng Holdes's  Tneaualily

Scanned by TapScanner




~om © and (9 we

Scanned by TapScanner



CHAPTER 2

g
—

e BT T A e L W i el T i e el H i g e P T e
iy : _— : " i

A T T PR L L e il ey i e

h.--.'..-—“ﬁ-whmwmmm
5 Ly e — e LT T — - - - — - = i e T —palls

e = o P ar—

L s

METRIC SPACES

2.0 INTRODUCTION

T]]C COI!(]E:,PE O ﬂ"ﬁiﬂi"rf{iH‘_,f:-;f:'!'.li{‘i.*'; )} '.'-;{]IH‘H'ILE}; Of real numbers {lt‘f])l‘.llilfi
on the absolute value of toe diff;on - hatwees any \wo real numbers, We
observe that this obsolute ~ajie . naryere he o the distance between the two
numbers when they are concideied as noints G the 1 al line. Por the stady of
the concepts hike C()I‘!H]lﬂ]ﬁi‘,’ dG converrencr he alpebraic ln'upttlilii‘t‘i Ol K are
irrelevant. This situation necesagtaies by o Ay ol sets i which a reasonable
notion of distance is defined. #, e s oed o with a rcasonable concept of
distance is called a metric space iy, ih. cihapler we develop i a systematc

manner the main facts about metne SPACES.

2.1 DEFINITION AND EXAMPLES

Definition : A metric spacc is a non-empty set M 1ogether with a function

d: M x M — R satisfying the followin; conditions.

(i) d(x,y)= 0 for all x,y EM \t
(i) d(x,y) = 0 iff x = y

(iii) d(x , y) = d(yx) for all x ,yE M N
(iv)d(x,z)s dx,y)+ d(y,z) for all x,y,zE M

(triangle inequality)
d is called a metric or distance function and d(x, y) is called the

distance between xi\and y .

Note. The metric space M with the metric d is denoted by (M ,d) or simply

by M when lhc underlying metric d is clear from the context.
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18 METRIC SPACES

@:ﬂmple 1. In Rwedefine d(x, y) = |x = y|.Then disametricon R. This
1s called the usual metiic on R.

Proof. Clearlyd(x,v)= |x- y| = 0.
Alsod(x,y)= 0 < |x- y|= 0.
@x=y.
dx,y)= [x-y]
= [¥= x|
= d(y, x) .
Now,letx ,y.z € R.
Thend(x,z)= [x- z|= |x- y+ y- z]
s |x-yl+|y-2z]|
=dx,y) + dy,2).
dlx,z)s dx,y)+ dy, 2).
Hence d is a metric on R.

Note. In what follows whenever we consider R as a metric space the under-

lying metric is taken to be the usual metric unless otherwise stated.

Example 2. In C we defined(z,w)= |z- w]|. Thend is a metric on C.

This is called the usual metric én C.

Note. If the complex number z = x + iy is identified with the point (x, y) of

the two dimensional Euclidean plane then the above distance formulz takes |

theform

7 7 _ -
d(z ,w) = \/(x— u)- + (y— v)” where z= x + 1y and w= u + iv.

This is nothing but the usual distance between the points (x, y) and |

(4, v) in the plane. |

Scénned by TapScanner 1



DEFINITION AND EXAMPLES 15

Example {:Dn any non-empty set M we define d as follows

0if x=Yy
d(x,y) = {1 if x=y.
\

Then d is a metric on M. This 1s called the discrete metric on M .

e i, e e N L el oy S ——— =

B e e —————

Proof. Clearly d(x,y) 2 Oandd(x,y)=0<sx=1Y.

' 0if x=Yy
Also d(x,y)=d(y,x) = {1 e oY

Y e;i(x,y)= d(y,x) forallx,y € M.
- Nowlet x,y,zE€ M.
Case () x = z
‘Thélnd(x,z)= 0.
Also,d (x,y)+ d(y,z) = 0.
dix,z)sdx,y)+ d(y,z)
Case (Ii) x = Z
Thend(x,z)="1
Also, siﬁcc x, z are distinct, y can not be equal to both x and z.
Hence eithery = xory = z. - |
o dx,y)+dy,z)= 1.
. d{(x,z)sdkx,y)+d(y,z).
Thusd(x,z)s d(x,y)+ d(y,z) forallx,y,z € M.
Hence d is a metricon M . |

| " n 172

Example 4. In R" we define d (x,y)=|) (x;—- y;) £ } s
5 | Li-:i | |

where x = [ X ; X5 ; corsanss , X,)andy = (y;,y,, TR ).

- Then dis a mctrjc on R™ . This is called the usual metﬁc onR".

Wi P Lt il
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. 1/2
Proof. d(x,y) = {2 (x. yl)"] = 0
|
- 1/2
d(x,y)=0¢¢-l§‘., (x; - )’1)2] = 0
4 p= ]
« (x;,-y:)>=0 forall i=1,2,.... n
< x;=y; forall i=1,2,...,n
 (X1,%5, e 3 X ) = (V15 V9 5 ceeeennn sV )
<S> X =y

1 = ]

Also,d (x,y) = [g (x; - )’;)2 ]

" 1/2
. LE i = x;) }
=d(y,x).
To prove the triangle inequality, take
a,=x;—y;, b=y - z and p = 2 in Minkowski’s inequality.
We get,
1/2 1/2 1/2

;(xi‘ Zi)z] S [E (x;-)’;:)z] + E()’;'-' Z£)21
=1

=1 (=1

e, dx,z2)sdkx,y)+d{y,z).

. - . n
. disametriconR".
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DEFINITION AND EXAMPLES 21

Example 5. Consider R". Letp> 1.

1/p

Wedefined (x,y )= |Z |x; - y. |F } X= (X, X s % :

t =1

y= (»1,¥25-,y,). Thend is a metricon R™.

,, The proof is similar to that of example 4.

Example 6. Lelx,yEha, Then x= (x{,x,) and y=0U1,¥ ) where
X1, X25 Y1, Y2 € R. Wedefine d(x,y)= [x; -y{| + |x, - y5 | . Then

d is a metric onR?.

E
Proof. d (x,y)= |x;-y1j+ |x,- y,| 2 0.

d(x,2)= |x1-z;1| + |x - 7|

= |x1— Y1+ y1—- 2| + |-‘72‘ Y2+ Y2~ zz|

i

s {Ix1=yl+ Iyi- 21} + {lxz- »2l+ |y, - 21}

dx,y)=0 < |x;-y;| + |x; — ¥, |=0
< |x;-y;| =0 and|x;- y,|= 0
< x1=y; and x; = y,
< (x1,x)= 01,)2)
<S> Xx= Y.

dx,y)=|x;-y;| + |x3 = y;|

_ = 1-x | + |y2- x|
=d(y,x).
, Lﬁtx,y,zERz. | A

\

{lx1=-yl+ Ixa=y2 0} + {ly1- 21|+ |y2=-2 [}
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22 METRIC SPACES

=d(x,y)+ d(y,2)
Thus,d(x,2z) sd(x,y) + d(y,2).
Hence, d 1s a metric onR *.

M
Note. More genemlly in R" we define d (x,y)= X |x; - y; | where
=1

Then d is a metric on R™ .
The proof is straight forward and is left tc the reader.
Example 7. In R" we define
d(x,y)= max { |x;= y;|  i= 1,2, ... ,n"j where;
x= (x{,..,x,) and = (y{,...,y,). Thend is a metric on R" .
Proof.d (x,y)= max {|x;—= y1|, |X2= ¥o|, eeneee, | %, — ¥ul} =2 0.
| d(x,y)=0< max {|x;- yi|, e, |X,= yul} =0

<> x;— y;=0 forall i=1, 2,...,n

§

X, = Yy; forall i=1, 2, ....,n

“

&
<
-
>
p—
!
=
<
~J
N
o —

¢

=y
Also, d (x , y) = max {|x,--— )’£|}

max {|y; - x;|}
= dy.x).
Now, letx, y, z € R". Since eachx;, y;, z. € R
we have, |x; - z;| < |x;- y;| + |y;- z| forall i=1, 2, ... ,n.

", max Ixi—qzil < max |x;- y;| + max |y;- z|
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DEFINITION AND EXAMPLES 23

ndx,z)sdx,y)+ d0, z).

. . n
Hence d is a metricon R .

Example 8. lLetcy, ¢y, ... ,c,, be given fixed positive real numbers.

Letx, y € R® where x = (X;, Xy, «wee s X, ) and y= (V1 yg”--..,yn).

We defined (x,y)= = c; | x; - y;|
; 1= 1

Thend is a metric on R". (Prove)

Note. A non-empty set M can be provided with different metrics.

For example, R® has been provided with five different metrics as

seen from the examples 4 to 8.

|
|
i Exampl<9/., letp= 1. Let ! B denote the set of all sequences (x,, ) such that
S 0 | 1/p
}f |x, |?is convergent. Define d (x,y) = LE-IIx e ] where
E x= (x,) and y= (y,).
i Thend is a metricon [, .
: Proof. Leta,bEIP.
i First we prove d (a , b) is a real number.
; By Minkowski’s inequality we have
E - R U e o 1/p
: ;(ai_,_bilpi 5{_2‘“[&;]?. +l‘2|bilp] ........ (1)

(=1 ] i =1 | li=1 _

Since a,b € [, the right hand side of (1) has a finite limit as

n — oo
! | ~ 1/p -
! ( 1 a.+ b;|”f ) - is a convergent series.

=
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1/
Similarly we can prove that (;; |a ; - b,-|f"] P 1s also a
i =1
cdnvergcm series and hence d (a, b) is a real number.
Now, taking limit as 7 — « in (1) we get
3 S Y7 1/p
(Elﬂ.‘+ bil" 5(3|ﬂf|P)
i=1 ) i=1
Obviously d(x,y) = 0,
dx,y)=0iff x=y
and d(x,y)= d(y,x).
Now, letx, y, z & ZP.

Taking,a;= x; - y; and b; = y;

i
co
> I.rl‘— lep
=1

- z; 1n (2) we get

- (E Iyl_ Z;IP]

1 =1

1/ p 1/p 1/p

< (2 | x; - )’f|p)
]

~dx,z)sdx, y) + d(y, 2).

Hence d 1s a metnic on IP .

Note. In particular, /, is a metric space with the metric defined by

co

d(x:y)= 2 {'xn"‘.frI‘

n=1

2 }1/2

Example 10. Let M be the set of all bounded real valued functions defined
on a non-empty set EDefined (f,g)=sup {|f(x)- g(x}|/xE E}.

d is a metricon M .

Proof. d(f,g)=sup {|f(x)-gx)[} = 0.
Also, d(f,g)=0 <« sup {|f(x)-g(x)|} =0
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< |f(x)- g(x)|= 0 forall x € E
< f(x)= g(x) forall x € E
< f=g.
Also, d(f,g)= sup {|f(x)- g(x)]|}
= sup {|g (@)~ f(x)]}
=d(g.)).
Now,letf, g. h € M.
We have |f(x)- h(x)| s |f(x)-g&x)|+ |g(x)- h(x)]|
sup {f (0= h() [} = sup {If@ - g@ )+ sup (g ()~ h @)
Ld(f,h) s d{f,g)+ d(g,h).

Hence d 1s a metricon M .

Example 11. Let M be the set of all sequences in R .
Llet x, y € M and let x= (x,,)andy = (y, ).

co

r. —
Define d(x,y) = X . | n .yul
H-llz (1+|x"_.y”|).

Thend is a metricon M . M

Proof. Letx,y € M. First we prove thatd (x, y) is a real number = 0.
"rn = Yn I

We have = L for all n.
2"(1+|xn“yn|) 2"
Also, Z —1; IS a convergent series.
ne= 1 2
= Ixn = Y I ; :
2 IS a.convergent series.

w1 2501+ lx, - y,|)
(by comparison test)
. d(x, y) isareal numberandd (x, y) = C.
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S x=Yy.
h"""“‘x | xn = Yl
Also,d(x, y)= X . -
n= 1 2 (1+|I ——y,,l)
> yn'—xl
= 2 = l
a1 2V (14 |yp- %]
=d(y, x).
Now, let x , y,zEM Then
(2= 2, |- 1
- e — < 1 - —
1+|x-—z| =1 1+ |x,- z,| (14 |x,= Ypl* [ Yn= 2Za ]

~ lxn—ynl'*'lyn:__z::“

- 1+ |xn_ynl+ |yn- znl

2 = ¥, ] B
1+|x-ynl+|yn" | 1+

|'1' "'yn.l | lyn"'znl | |

s , .
1+ [ %= Yul 1+ |yn- 24l

\

Multiplying both sides of this inequality by, -;; and taking the sun

from n=1 to © weget d(x, 2) < d(x,y)+ dy, z).

. d is a metricon M .
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E Example 12. Let/ * denote the set of all bounded sequences of real numberg

Letx= (x,,) and y= (y,,) € I° define d on [ as

di(x: .}’)""- Iublxn_ ynl

Then d is a metricon!/ .

Solution. d(x, y)= lub|x, - y, | =2 0

d(x, y)=0 < lub |x,- y,|=0
@]xn—yn|=0for 1< n< o
< x, =y forl sn«<
<@ (xy= (¥,)
| <> x=y.
Now,d (x, y) = lub|x, - y, |
| = lub|y,- x,|
= d(y, x).
Let z= (z). |
— Now, |x,-z|=|x,-y |+ |y, - z,|
< b |x, - y,|+ Wb |y, - z,|
=dx, y)+ d(y, 2).
colub |x, -z, | sdkx, y)+-d(y, 2)
% dx,z) <dx,y)+d(y,z. | //

. d is a metricon ! ”.
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Solution. d (v, y)= d; (v, y)+ d,(x, y) =2 0.

e

T
e

dx, y)=0 <« di(x, y)+ dr)(x, y)=0.
< dy(x, y)=0 and d, (x, y)= 0
| > x=y .
Now,d(x, y)= d;{(x, y)+ d,(x, y)
= dl(}'a -1:)+ dz(}’: 'x)
= d(y, x).

Let x, y, z&€ M . Then we have
d(x,2z) sd (x,y)+d{(y, z) and

dy(x,z) sdy(x,y)+ dy(y, z)
Adding, we getd (x, 2) s d(x, y)+ d(y, 2)

. d 1s a metricon M .

Problem 2. Determine whether d(x , y) defined on Rby d(x,y) = (x - },)3

"~ - 1S a metrnc or not.

Solution. Let x, y € R.
' d(x,y)= (x-y)" = 0.
dix,y)= (x= y)" = (y- 9°*
= diy. x).

But tnangle inequality does not hold.

Takex= -5, y= -4and z= 4
Thend(x,y) = (-5+ 4)° = 1
dy,z) = (-4-4)" = 64

. d(x, z)=(4+ 5)2'='81.
Here dix, z)> d{x, )+ d(y, 2
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%
Hence tnangle mmequality does not hold.,
. d 1s nota metricon R,
=\ . . L2
Proble“G-‘ Ifdisa metricon M, is d ©“a metric on M?
Solution. Considerd(x, y) definedon R by d(x,y)= |x - y .
We know that d is a metric on R (refer example 1) .
2 2
d°(x, y)=lx-y|" = (x- »)?*.
But d * is not a metric (refer solved problem 2) .
Problem 4. If d is a metricon M , prove that Vd is a metric on M .
Solution. Let x,y,z € M. |
. We have Vd(x, y) 2 0 (since d (x, y) = 0)
Also, Vd(x ,y) = Vd(y, x)
Now,d(x,z) s d{x,y) + d(y, 2) &

o Vd(x,z) s Vdx,y)+ dy, 2) |
< Vd(x,y) + Vd(y,z)(since Va+ b < Va + Vb)
Hence Vd is a metricon M . '

Problem 5. Let (M, d) be a metric space. Define

_ _dx,y) , . .
di(x,y)= 1% dix.3) Prove that 4, is a metricon M .
Solution d (x, y) = 032 53 = 0. (since d(x. y) = 0)
ks 1+ d(x,y) ’
d(x, y)
dy(x,y)=0 < —— d(xy o 0
< dx,y)=0 i
<> x=y. (since d is a metric)
_ d(x , y)
A]SO,dl(x,y)—- 1+ d(x,y)
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d(y, x) -

e d(y, x)

.#'—'
e

- i

=2 {11 (_V . .17) "

Now, letx, vy, 2z € M.

1(x
Then d(x, 2) = d(x,2z) E

1 + d(x, 2)
|
1+ d(x, z)
]
= 1- {1+ d(x ,y) + d(y,z)]
dx, y)+ d(y,2)

-1

1+ dlx,y)+ d(y, z) ;
_ d(r Ly) % : d(y,;-':.' s ‘:

1+ dx,y)+ dy,z) 1+ dx,y)+ d{y,2)
- dx, y) d(y, z)

1+ d(:r,y)+ 1+ d(y, z)
= dy(x,y) + d((y,2).

Thus dy (x, 2) s d{(x, y)+ d{(y, 2).

O g S

. -.._
o e e =t

. d{ 1sa mectricon M .

Problen Let (M,d) be a metric space. Define

di(x,y)= min {1, d(x,y)}. Prove thatd, is a metric on M .
Solution. d{(x,y)= min {1,d(x,y)}= 0.
sodilxsy) = 0.
di(x, »)=0 < min {1,d(x, y)}=0
< d(x,y)= 0.

< X=Y.

Also dq(x,y)= min {1,d(x,y))
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Now, letxy, ¥, <

Then dy(x,2) = min {1,

, Z)
To prove dy(x, 7)< dy(x, y) + dy O

) ] d (-v : z) - 1 t € C )
lf dl(l }’) - Of 1\

Let dy(x,y) < 1 and 40V, z) < 1. Then

di(x, y)+ d, (y,z) = min (1,dx, y)}+ min { 1., d(y, 2)}

= d(x,_}))-i- d(y:f-)

> dix.2)
> min {1,d(x,2)}-

= dy (x,2)
Thus dy (x, y) + d; (v, 2) = d1 (%, z)
. d; isa metricon M .

Problem 7. Let M be a non ﬁmpty set., Letd: M xM — R be a function

such that (i) d(x,y) = 0 iff 2
Gi)d(x,y) s dx,z)+ d(y z) for all x,y,z € M.

Prove thatd is a metricon M .

Soiution. Puty = x in (11).
We have d(x, x) s d(x, z) + d(x, 2).

. 0= 2d(x,z) (by (1))
. dx,z)z 0.
Now, to prove d (x, y) = d(y, x) .
Putting z= x in (ii) we get d(x,y) s d(x,x)+ d(y,x)
G.e)dx,y)s d(y,x) [using ()] |
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Since this s true forallx , y € M we have d(y , <) < d(x ¥).
Hence d(x , y) = d(y, x) .

Now (11) can be written as d(x , y) = d(x , z) + d(z, y) which is the
tnangle inequality.

. d 1s a metricon M .

Problem 8. |If (Ml v dy), M, ,dy), ... , (M, ,d,) are metric spaces then )
M{x M, x ........ x M, 15 a mcetric space with metric d defined by

1
ax,y)= Z d;(x;,y;)where x = (X1 , X3, cccee , X,) 3 ¥ = (1, Yoy, eevee. vy |

)
(= ]

n
Solution. d(x,y)= £ d; (x;,y:) = 0.
¢ = 1

n
Alsod(x,y)=0 < Z d,(x;,y;)= 0
(= ]
< d (x;,y;)=0 forall i=1,2, ... N

< x;=y; forall i=1, 2, ....,n

<> (.11 y savove ,A'H s (}’1 3 veeceen .))ﬂ)

Alsod(x ,y)= X dl-(x,-,yi)

W
| = l

= 2 d; (y;,x;)
o

=d(y, x).
Now, letx ,y,z € M.

Then d(x ,2)= X d; (x;, z; )

(= 1
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< ; [df(xi.yi)-t- d:'(}’irzi)]

P - ]

Zd;(x;,y;)+ 2d;(y;,z)
jw 1 fu ]

= d(x,y)+ dy, 2).
S dix, zysdx, y)+ d(y, 2).

Hence d i1s a metncon M .

Problem 9. In a metric space (M, d) prove that
|d(x,2)~- d(y,z)|s d(x,y) forallx,y,z € M-
Solution. Let x,y,z € M.
We have d(x ,2) < d(x,y)+ d(y, 2) ,
sodx,z)-d(y,z)s dx,y)- asvisa L L)
Interchanging x and y in (1) we get
dy,z)- dx,z)=s d(y,x)
= d(x,y)
sody,z)-dx,2)sdx,y)- 0 e (2)
From (1) and (2) we get|d(x,2) - d(y,z)| s d(x,y). ~ E

Exercises

1. Let M= {a,b,c} Wedefined onM as follows.

(a ,b)=db,a)=3:db,c)=d(c,b)= 4
d(c,a)=d(a,c)= 5 and d(a,a)= d(b,b)= d(c,c)= 0.
Prove thatd is a metricon M .

2. If d is a metricon M prove that
(i) 2d is a metricon M .

(ii) nd is a metric onM where n € N.
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1 | Qﬁ\
q@ >

'5.2 BOUNDED SETS IN A METRIC SPACE Q>

E Definition. Let (M, d) be a metric space. We say that a SubﬂﬁtA of

' bounded if there exists a positive real number & such that
B ' d(.r,y)skforalll y e A.

r

Example 1. Any finite subset A of a metric space (M ,d) is bounded. )

' Proof. Let A be any finite subset of M .
If A= ® thenA is obviously bounded.

Let A= ®. Then {d(x,y)/x,y € A} is a finite set of reél

==

- et

' numbers.

Let k= max {d(x,y)/x,yE A} .

Clearly d(x ,y) s k ft;)r all x,y € A.
" A 1S bc;unded

T ————

== o T -

| Example 2. [0,1] i1s a bounded subset of Rvmh usu: 11 metric since
d(x y)s 1 for all x ,y € [0,1].

| More generally any finite interval and any subset of R whlch is con- ._
‘tained in a finite interval are bounded subsets of R.. |

r liean, W L

Example 3. (0, x)is an unbounded subset of R. SR \ 35

T

Example 4. If we consider R with discrete metric, then (O ©)is a bounded

D T e T Pt i Pl Wl o gy oy ol o W T P

subset of R,sinced(x,y)s 1 for all x,y € (0, m)

More generally any subset of a discrete meétric space M is 2 bounded
subset of M .

Example S. In 1 let el= (1,0, ... a5y 0 5 senses ), €y = (0

€3 = (0 O 1  vee 0 y seaces ), .......‘...._...'. -
]..etA—{el,EZ,..*.* - .

Then A isa bounded subset of [ .
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Proof. d(e_ , e )= {‘@ bty
" if n=m.
oo d(e,,e )s V2 for all e, e, € A.

. A 1s abounded set in i, .

d(x.,y)
1+ d(x,y)

Example 6. 1et (M, d) be a inetric space. Define dy(x,y) =

We know that (M , d; ) is also a metric space.
Alsodi(x,y)< 1 for all x,y € M.

Hence (M , d;) is a bounded metric space.

Definition. Let (M, d) be a metric space. Let A & M Then the diameter of
A, denoted by d (4) , is defined by d(A) = lub {d(x,y)/x,y € A}

Note 1. A non-empty set A is a bounded set iff d(A) is finite.

|
Note 2. LctA B C M Then A C B = dA)= d(B). | |

|

Example 1. The diameter of any non-empty subset in a discrete metric space
is 1. |

Example 2. In R the diameter of any interval is equal to the length of the

interval. For example the diameterof [0, 1]Jis1.
Example 3. In any metrc spc;icc, d(®P) = - =,
Exercises. '
1. Let (M, d) be a metric sp'acc Dcﬁne dy(x,y) = min {d(x ,y) , 1}
Prove that (M , d,) is a bounded metric space.

2. Let (M , d) be a bounded metric space. Define dix,y)= 2 d(x y).

Prove that (M , d; ) is a bounded metric space.
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3. Prove that in a metric space any subset of a bounded set is bounded.

4. Find the diameter of the following subset of R with usual metric.

(i) {1, 3,5,7,9) (ii) {0, 1, 2, 3, ....., 100}
(iii) [~ 3, 5] (V) [- 5, 5]
(v) N. (vi) Q.

.
—— —— s — —

. (vii)[1, 2] U [5, 6]  (viii) [3,6]N[4, 8]

¥ 2.3 OPEN BALL (OPEN SPHERE) IN A METRIC SPACE

' Definition. Let (M | d) be a metric space. Leta € M and r be a positive real

numbcer. Then the open ball or the open sphereﬁ with centre a and radius

ke denoted by B, (a , r) is the subset of M given by e 9 %0
. Bfa,r)= {xE€M/d(a,x)< r}

. When the metric 4 under consideration is clear we write '"'B(a , ) instead of |
Bja,r). '

§ Note 1. B(a,r)is always non-empty since it contains at least its centre @ .

J

f Note 2. B(a,r) is a bounded set.
' For,letx,y € B(a,r).
:. o dla,x)< r and d(a,y)< r
1; Sodx,y)sdx,a)+ dla,y)<r+ r=2r
Thus d(x,y) < 2r. Hence B(a , r) is bounded.

’

§ Example 1. Consider R with usual metric. Let a € R.

}
Then B(a,r)= {x € R/d(a,x)< r}
={x€ R/|a-x|<r}
).} _ ={rxr€ R/a-r<x<a+r}

=(a-r,a+r).
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Example 2. Consider C with usual metric. Leta € C.
Then B(a, r)= {z € C/d(a,z)< r)
={z€ C/|z-al< r}.

This is the interior of the circle with centre a and radius r.

Example 3. In R? with usual metric B (a, r) is the interior ef the circie with

centre a and radijus r .

Example 4. Let d be the discrete metric on M .

{1M ifr::l

them Big, £, {a} ifrs1

Proef. We have dx,y) = {(1) :f :: i i

Let a € M. Letrbe any positive real number.

Case (i) Let r> 1. Then Bla,r)= {x € M /d(a,x)< rt
Clearly every pointx € M is such that d(a,x) < r.

Hence B(a ,r) = M.

Case (ii) Let r < 1. In this case for any point x= a,d(a,x)= 1= r.
Hence x & B(a, r) so that B(a,r)= {a)}

: | M ifr>1
- Bla,r)= {{a} ifrs 1

Example 5. Consider M = [0, 1] with usual metricd(x, y) = |x - y]|.
Here B(0,1/2)= {x€ [0,1]/d(0,x) < 1/2}

= {x(_E [0,1]/|x|< 1/2}
= [0, 1/2).
Example 6. Consider R” with the metric d given by

d((c1,y1),(x2,¥2)) = | x; = x, | + |y1 = yo

Then B((0,0),1)= {(x, ) € R*/|x- 0|+ |y- 0]< 1)
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Definition. Let (M, d) be a metric space. Let A be a subsel of M . ThenAn
said to be open in M if for every x &€ A there exists a positive real numbq
r suchthat B (x, r) €

2.4 OPEN SETS

Example 1. In R with usual metnc (0, 1) is an open set.
Proof. Let x € (0, 1).

Choose r= min {x - 0,1 - x}= min {x, l-x} RN
Clearlyr> 0 and B(x,r)= (x-r, X+ r) S(0,1)-
. (0, 1) is open.

Example 2. In R with usual metric [0, 1) is not open since no open ball wil

centre 0 is contained [0, 1). | N\

Example 3. Consider M = [0, 2) with usual metric. l'/%ﬁ
Let A= [0,1) € M. Then A is openin M . ,)

Proof. Let x € [0,1) @
1 1 /\
If x= 0 then B(O’_Z—)= [0,-5) CA.

If x = O choose r = min {x,1- x}.
Clearly r> 0 and B(x,r)= (x—-r, x+ r) € [0,1).
. A isopeninM.

Example 4. Any open interval (@, b) is an open set in R with usual metric
. B

Proof Let x € (a,b).
let r= min {x- a,b- x}

Then B (x,r) C (a, b) . Hence (g, b) is an open set.

Note. Similarly we can prove that ( - «, a) and ( a,) are open sets.

Example 5. In R with usual metric the set {0} 1s not an open set since,

open ball with centre 0 is not contained in {0} w,
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Theore@ In any metric space (M, d) each open ball is an opcn set.

‘Proof. Let B (a, r) be an open ball in M .

g e
lLetx € B(a,r). gy V=210, P,('T-f'l“.‘_
Thend (a,x) < r. | |
W 1¢ @, 320 \

. r-d(a,x)> 0. ')CBCQN.
Let d (a, x) S |

ry ™= 75— ax). '
We claim that B (x, r{) & B(qz r).
et y € B(x,rqy) |
dx,y)<ri=r-d(ax).
Ldx,y)+d(a,x)<r e (1)

blﬂf?ﬂaﬁuﬁ\?‘]%l\low,d(a, Wsd(ax)+d(x,y)<r (by(1)).

s d(a y)= r.
.y € Bla,r)

Hence B(x,ry) & B(a,r)
. B (a, r) is an open set.
Theore@. In any metric space the union of any family of open sets |
~ open. Jewsw - Lo ren ov wep)

Proof. Let (M, d) be a metric space.
Let {A; /i € I} bea family of open sets in M .

Let A= UA:

i€l
If A= ® then A is open.

S letAne . letx €E AL, .
Then x € A; for some i € 1.

Sirice A, is open there exists an open ball B (x, r) such that B(x , r) C A
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s Blxr) G A.

) Hence A is open.
"[‘henrem@“* In any metric space the intersection of a ﬁnir(z number of open

sets 1S open.

Proof. Let (M, d) be a metric space.
Let Ay, Ay, ... ,A, bc opensetsin M.

If A= & then A is open.

S letAwm D letx € A
s X & A:tor each = 1.2, ... n.

Since each A; is an open set there is a positive real number r;- such

that B (x, ri) = Ai .......... (1)
et r= min {rI,rz, ....... ,r”}

Obviously r is a positive real number and B(x, r) €. B(x, r;) for all

| Hence B (x, r) C A; forall i= 1,2,....,n. (by 1)

.o B(x,r) o8 (:]Al 5

= ]
2 Blie.r) & A

. A IS open.

Note. The intersection of an infinite number of open sets in a metric space
need not be open.

For example; consider R with usual metric.

™
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Let z € B(x,lr)ﬂB(y,—l-r).

, 2 & B(x,%r) and z € B(y,%r).

S dix, z)= %r and d(y, 2) < %r.

Now,d (x,v)< d(x,2)+ diz,vy).

1 1 1 ; : o
T - r + - . which 1s a contradiction.

Hence B(x,ir)ﬂB(y,lr)= D,

Problem 2. Let (M, d) be a metric space. Letx € M. Show that {x)} is
open.

Solution. Let y € {x}°. Then y = x.
sodx,y)=r> 0.

Clearly B (y, % ) S {x}".

- {x)}°is open.

Problem 3. Let (M, d) be a metric space. Show that every subset of M is
open iff {x} is open forallx € M. |

Soltution. Suppose every subset of M is open.

R - ke W, - ol = -

Then obviously {x} is open forallx € M.

el .

A — T T T e T I e il e e vy

Conversely let {x} be open forallx € M.
Let A be any subset of M.

If A= @ then A 1s open..

et A = ®. Then A= U {x}. .

xCA
By hypothesis {x} is open.

Hence A is open.
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oo 2122
rl)"'{(a”)ehﬂnd E&'z 1}

Mn <

7 - ] j

Problem 4. et A = [(a

Prove that 4 js an open subscet of Z, |

Solution. We first prove that A = B (0, 1) where 0 = (0,0, 0, ....)
Letx € A, Hence 3 4 < 1
n= 1
Foo 1/2 - 1/2
d(.-l, 0)- |Z (,,;’"-— 0)2] = [E .Iﬁ] < 1
| ) - n= 1
Thus d (x, 0) < 1
X &€ B(0,1)
. A C B(0,1) (1)
Now, lety € B (0, 1)
~d(0,y)< 1.
o 172
: [z l(vn- 0)2} < 1
- 1/2
{E y,,zJ < 1.
n= 1
T Y E A,
. B(0,1) C A. - - (2)
By (1) and (2) we getA = B (0, 1) B (3)

Now, the open ball B (0, 1) is an open set. (By theorem 2.2)
. A is an open set.

Problem 5. Prove that any cpen subset of R can be expressed as the unjon of

A countable number of mutually disjoint open intervals.
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pen subset of R. Letx € A. Then thege Exl.

B(xr)"‘(-’:"?‘1+r)CA Stga

erval/ suchthatx &€ J 344 o
. C 4

ution. Iﬁt A BeARE
r such that

ts an ope€ll int

Sol
}osﬂwc real number

Thus there XIS |
Let [, denote the largest opell interval such that x € .I and [ s A

Clearly U be = A.
- x €A

e

Now letx, y € A-

We claim that 1, = I or I, 1 D

| Supose 1, ﬂI = P

Then I, U/, is an open interval Contamed inA .

But I, is the largest open interval such thatx € [_and I CA. |
IUI=I sothatl @

Similatly I, €1,

o I = ]y . Thus the intcrva]si]x are mutuzil]y tiisjnint.

‘We claim that the set F = {/, / x € A} is countable.

Now foreach /, € F choose a rational nukmbc‘r .S 1.

Since the intervals 7 are mi:tually disjoint [, » I.y' =, = A
S fiF—=Q defined by f (1,) = r, is 1-1.

- Fis equivalent to a sub set of Q which is countable.

. Fis countable.

Equivalent metrics.

o .
finition. Let d and P be the two metrics on M . Then the. mctncs d andﬂ '

are said to be equivalent if the open sets of (M, p) are the open scts o
|(M d) and conversly '
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Problem 6. Let (M, d) be a metric space. Define p (x, y) = 2d (x, y).
Then d and p are equivalent metncs.

Solution. We know that p is 2 meiric on M .
We first prove that B, (a, r) = B, (a, 2r)

Let x € Bd(a,r)

> dla,x)< r.

=, 2dta,x) < 2r.

. p(a,x)< 2r. Hence x € B, (a, 2r)

s Balany e B la,2r) 00000 weweees (1)
Now, let x = Bp (a, 2r)

. pla,x)< 2r.

‘. -é-p(a,x)f:: r. |

. d(a,x) < r. Hence x € By, (a,r) .

. B, (a,2r) & By (a,r)  eeeeeseen (2)
.. By (1) and (2) we get B, (a, ) = B, (a, 735 VT (3)

Now, let G be any open subset 1n (M,d). Let a € G. Hence
there exists 7 > OsuchthatB,(a,r) & G .

. B,(a,2r) & G (using 3)

. G is open in (M, p). .
Conversly suppose G is openin (M, P).
Let a € G. Hence there exists 7 > 0 such that B, (a, y) C G,

Hence B, (a, -1- () C G (using 3). Hence Gis openin (M, d) .

~. d and p are equivalent metrics.
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;T‘.\i abhlem 2 & ot (:‘.’, ) e a

mMene space, Define p(x, y)= ~ d(g&)’)
' I+ d(x, y)

UV that o an B % !
cand poare equivalent meimes on M

Solution, We . : .
¢ Raow that p s a metric On M. (refer problem S jn 2.1)

We DSt prove B (g r) | 4
pla.r) = By (a, T ) provided 0 < r < 1. \

Le =
LY e B (@r). Hence P (a,x) < r

SCACARY]

L+ d(a. Y "
S da, x) < L1+ dia,n)). ’
S d @) 1= r)< r,

5
- (since 0 < r < 1)

“d{a,x) <

& X B Byla, )
1-r

S Bola,r) © Byla,~5y. (1)

l_r IIIIIIIIIII

Now, let x 4 ,
C eAEBd(a,]_r) Harlced(a,x)<1r

. d{a,x)(1- P<r.
Y dila, x)« r{il+ d(a, x) ]

d (a, x)
1+ d(a,x) = 7

v plaix) < r.

SooXE Bp (a,r).

- By (a, 14:. r) C B, (a,r) e )
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" By (1) and (2) we get B (a ,i*-c*-; = B, (@a,r) o (3)

Now, let G be open in (M, p)
Leta € G . Hence there exists r > () such that Bp (a, r) C G.

Without loss of generality we may assume that r < 1.
: r
- B4(a,77—) S G (by(3)).

"~ Gisopenin (M, d) .
Conversely let G be open in (M, d) .
. There exists r > 0 such that B, (a,r) C G.

W B, (a,-l ~ r) C G (using 3).

.. G isopenin (M, p).
Hence d and p are equivalent metrics.

Problem 8. If d and p are metrics on M and if there cxists k> 1 such that

1
7P (X, )< d(x.y)s kp(x,y) forall x,y € M. Prove that d and p are

equivalent metrics.

Solution. Suppose there cxists k> 1 such that for all x , Yy EM

%p(x,wsd(x,y)skp(x,y) s (1)

Let G be an open setin (M, d) .
Leta € G . Hence there exists » > 0 such that |
Bd(a:r)(—:-c- (2)

We now claim that Bp (a, fL ) L G,
'd :
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.
Letx € Bp (a,“;;

v p(a,x):: i

; kp(a,.r)‘-c: r.
‘o d(a,x)<r (usingl)
. x€ By(a,r) € G (by2)

. x € G. Hence B, (a,7) C G.

. G is open in (M, p)
Conversly let G be open in (M, p). Leta € G. |
. There exists 7> Osuchthat B, (a,r) & G . ! naen (3

We claim B, a,7) CG. - )
: | r
Letx € B (d,'—;).

r
= da, x) < -

s kd(a, x)< r
L opla, x)<r ('uéingl)
~x € B,(a,r) &G (by3)

. X € G. Hence Bd(a,i) C G.

Hence G is open in (M, d) .

. d and p are equivalent metrics.

Scanned by TapScanner



SUBSPACE >3

2.5 SUBSPACE

Definition. Let (M, d) be a metric space. Let M| be a non-empty subset of
M . Then Myis also a metric space with the same metric d. We say that
(M{ , d) is a subspace of (M, d) .

li

Note. If My is a subspace ofM a sct which is open inM,; need not be open in

M.
For example, if M = R with usual metric and M; = [0, 1] then

[0, z ) is open in M but not open in M.

We now proceed o investigate the nature of opensetsin a subspace
M, of a metnic space M.

Theorem 2.6. let M be a metric space and Ml a subspace of M. Let

A; & M;. Then A, is open in M iff there exists an opensetA in M such
that Al - A an.

Proof. Let M, be a subspace of M. Leta € M, .
“We denote By (a, r) the open ball in M, with centre a , radius r .
Then B, (a,r)= {x € M, /d(a,x)< r}.
Also,B(a,r)= {x e M/d(a,x)< r}.
Hence, By (a,r)= B(a,r) N M, . L (1)

Now, let A| be an open set in M), .

Ai= U B{(x,r(x)) (by theorem 2.5.)

IEAI

= U [B(x,r(®) NM] (by (1))

' xEAI

= U B(x,r(x) | NM;.

IEJ‘II * -
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= ANM; where A= \J B (x,r(x)) whichisopenM .

IEA‘

Conversely let A;= ANM,; where A isopenin M.
We claim that A is open in M, .

Letx € Aq.

- X & A and x € M, .

| Since A is open in M there exists a positive real number r such that
B(x,r) C A.

S M{NB(x,r)CM, NA.
ie. By(x,r)CA; (using(1))
. Ajisopenin M, .

Examplel. LetM = Rand M; = [0,1]. Let A4, = [0,1)

1 1 1 ; , :
Now A, = [0,§)= (- 5 —2-) M [0, 1| and ( - %, %) 1s open in R .

[0,—;— is open in [ O, 1].
Example 2. Let M = R and M= [1,2] U [3,4].
Let A; = [1,2]. Then A, = [1,2] = G,2)NM,.
= [1, 2] is open M, .
Similarly [3, 4] is open in M, .

Solved Problems

Problem 1. Let M; be a subspace of 2 metric Space M . Prove that every open

setA; of M, isopeninM iff M, itself is open in M .

Solution. Suppose every open SetA; of M, is openinM .
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Now, M| is openin M, .
Hence M is openin M .

Conversely, suppose M, is open in M .

Let Ay be an open set in M, .

Then by theorem 2.6. there exists an open set A in M such that
AI = AN Ml"

Since A and M, are open in M| we get A, is open in M .

Exercises.

1. Give an example of a metric spacc M and a non-empty proper

subspace M1 of M such that every open set in My is also an open set in M .

2. Let M{ be a subspace of a metric Space M . letA1 © M. IfA;q is

open in M prove that it is open in M also.

2.6 INTERIOR OF A SET

(

Definition. Let (M, d) be a metric space. Jet A © M. Let x € A. Tken

is said 1o be an interior point of A

if there exists a positive 1eal number
rsuchthat B (x,r) C A .

The set of all interior points of A is called the inte
1s denoted by Int A4 .

Note. IntA C A4 . @ 1'\)

riorof A ard it

|LE)mlmple 1. Consider R with usua] metric.
(@) Let A= [0,1]. Cle:
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Then for any positive real number r, B, r)= (x— r, x + r)contains

irational numbers.
" B (x, r)is not a subset of Q.
. X 18 not an intenior point of Q .
Since x € Q is zibitrary, no point of Q is an interior point of Q .
“Int Q= O
(¢) Let A be a finite subset of R. Then Int A = .

(d) Let A= {0,1,2, oo, et }. Then IntA = &-

Y b
R "

Example 2. Consider R with discrete metric.
LetA = [0, 1]. Let x € [0, 1].

O R Y N e - o = =

Then B (x, ;,1* )= {x} € A (referexamplc 4 of 2.3.).
. X Is an intenor point of A .
Since x € [0, 1] is arbitrary Int A= A .
Example 3. In a discrete metnc space M, Int A = A for any subset A of M.

Basic properties of interior are given in the following theorem.

Theorem 2.7. Let (M, d) be a metric space. let A/ B C M.
(i) Aisopeniff A = Int A.

In particular Int @ = @ and Int M = M.

(ii) Int A = Union of all opcn sets contained in A .

' (iii) Int A is an open subset of A and if B is any other open setf
contained inA then B C Int A.

i.e. Int A 1s the largeét open set contained in A . | ]
iv v ACB=Int AC Int B.

(v) Int (A NB)= IntA N InB.
(vi) Int (A U B) 2 IntA U Int B,

i
,!
'i
!
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Proof. (i) follows from the definition of open set.

(i) et G = U { B/ Bisan open subset of A o
To prove that IniA = G .

Let x € Int A .

. There exists & positive real number 7 such that B (x,r) C A.
Thus B (x, r) is an open set contained in A .

. Bler € G,

=X € G,

~macce. (1)
Now,let x € G.

Then there exists an open set B such thatx € Band BC A,

Now, since B isopenandx € B there exists a positive real number
rsuchthat B (x,r) € B C A.

. X is an interior point of A .
HenceG C ItA4. (2)
From (1) and (2),, we get G = Int A .

(iif) Since union of any collection of open sets is open

(ii) = Int A is an open set.

Tovially IntA C A .

Now, let B be any open set contained in A .
ThenB C G = IntA. (by2)

. Int A is the largest open set contained in A .

(iv) Letx € IntA.
. There exists a real number r > OsuchthatB (x,r) C A.

But A € B. Hence B(x,r) C B.
. x € IntB.Hence IntA C Imt B.

e T
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b
) o vy dintle ey 1 Qoo A -
2.7 CLOSED SETS

Definition. Let (M, d) be a metric space. LetA C M. Then A is said 1o be
closed in M if the complement of 4 is openin M .

Example 1. In R with usual metric any closed interval [a, D] is closed set.

Proof. [a,b]" = R - [a,b] = (- =, a) U (b, o).
i \
Also (- =, a) and (b, » ) are openin R.
i.e. [a,b] “isopenin R
-~ la, bl is closed in R .

Example 2. In R with usual metrc [a, b) is neither closed nor open.

Proof. [a, b) is not open in R since a is not an Interior point of [a, b ) .

Now, [a,b)" = R~ [a,b) = (=, a) U [D, ) and this set is not
open since b is not an interior point.

. |a, b) is not closed in R .
Hence [a, b) is neither open nor closed in R .

Example 3. In R with usual metric (a, b] is neither closed nor open.
Proof is similar to example 2.

Example 4. Z is ciosed. )

Proof. Z°= \U (n,n+ 1)
The openinterval (n, n + 1) is open and union of open sets is open.

Z © is open. Hence Z is closed.

. =\
Example 5. Q is not closed in R. f@

Proof. Q= the set of irrationals which is not openin R .
co Qisnotclosedin R. —

Example 6. The set of irrational numbers is not closed in R .
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Prooi s stmialar to that of example 5.

Example 7. In R with usual metric every singleton set is closed.

Proof. Let a € R,
Then {{I}F = R - {u} = (= 00, a) U (a, o )
Since (= o, a) and (a, ®) are both open sets (= o0, a) U (a, ) is open.
{@a}" is open R . Hence {a} s closed in R .
Example 8. Every subsct of a discrete metne space 1s closed.
Proof. Let (M, d) be a discrete metne space.
LetdA © M.
Since every subset of a discrete metric space is open A © is open
(refer example 10 of 2.4.)
4 18 closed.
Definition. Let (M, d) be a mictric space. Lleta € M. Let r be any positive

real number. Then the closed ball or the closed sphere with centre a and

radius r, denoted by B |q, r], is defined by

S =

T < —

[ B,la, r]= {x E M.r a'(a ,1) < r

T — e

When the metric d under consideration is clear we wrile B [r: r] umtt.,ad
of B, [a, r].

Example 1. In R with usual metric B [a, r] = [a=r, a+ r].
Example 2. In R “ with usual metric let g = (ay,ay) € R,
Then Bla,r]= {(x,y) € R* / d((ay ay), (x,y))s r)

= {(‘x‘.ly) = Rz/(x"‘ ﬂ1)2+ (y—- ﬂz)zi rz}.

Hence B [a, r] is the set of all points which lic within and on th
circumference of the circle with centre @ and radius r.
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Theorem 2.8. In any metric space every closed ball is a closed sét.

Proof. Let (M, d) be a metric space.
Let B [a, r] be a closed ball in M .

Case (i) Suppose B [a,r] =
“. B [a, r]° is open and hence B [a, r] is closed.
Case (il) Suppose B [a, r]° = & . ki
letx € Bla,r}°. F
o X & Bla,rj.

. dia,x)> r

.d(a,x)- r> 0.
Letr; = d(a,x)- r.

We claim that B (x,r;) C B [a, r|°.
Let y € B(x,ry).-
Theud (x,y) < ry= d(a,x)- r.
“d(a,x)> d(x,y)+ r.
" Now,d(a,x)s d(a,y)+ d(y, x).
. d(a,y)z d(a,x)- d(y, x).
>d(x,y)+ r- d(y, x) (by1)

= r.
Thus d(a,y)> r.
.y & Bla,r].
Hencey € B|a,r]°.

< Bix,ry) € Bla,r]".
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“ Bla, r]“isopenin M .
“ Bla, r]isclosed in M .

Theorem 2.9. In any metnce space M, (i) P is closed, (ii) M is closcd.

Proof. Since M€ = @ js open. M is closed.

Similarly ®° = M is open and hence is @ closed.

Note. We note that in any metnc space M, ® and M are both open and closec

Theorem 2.10. In

closed.

any metric space arbitrary intersection of closed sets j

Proof. Let (M, d) be a metric space.
Let {A; /i € I}be a collection of closed sets.

We claim that N A; 1is closed. |
i €1

We have (ﬁ Ai] ‘= UAC (by De Morgan’s law)

1 € ] €] ‘
3 UniopnAr Jpndotsed\ oy
Since A; is closed A; € is open.

Hence U A;© isopen. ( by theorem 23.)

t &1

(ﬂ A,—]c IS open.

X |

S ) A; is closed.
1 €]

Theorem 2.11. In any metric space the union of a finite number of closed
sets is closed.

Proof. Let (M, d) be a metric space.
Let A, sle s ,A,, be closed sets in' M.

By Dc-Morgah’s law (A; UA, U
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Since cach A; is closed A; © is open.

Hence A NAS N ... NAS isopen.  ( by theorem 2.4.)

" (A{UA, ... UA))" is open.
Hence Ay UA,, ... UA  is closed.

Note. The union of an infinite collection of closed sets need not be clos
For example, consider R with usual metric.

LetA = [i—, 1] where nm 1, 2,3, s

n= | nw= |

i [
Then U A, = U [;,llz {l}U[-I-,I]U[-;-,*l]U .......
= (0, 1] which is not closed in R .

S U A, is not closed.

me |

X
Theorem 2.12. Let M be a metric space and M be a subspace of M .

Fy & M; . Then F, is closed in M, iff there exists a set F which is close
M such that F; = FN M, .

Proof. Let F; be closed in M; .
“ My - FyisopeninM, .
" M;- Fi= ANM; where A is open in M . (by theorem J
Now, Fy = My - (A N M,) '
=M - A =A"NM,.
Also, since A is open in M , A “is closed inM .

o Fym FNM; where F = A € is closed in M !

Proof of the converse is similar.
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2.8 CLOSURE

Let (M, d) be a metric space. LetA C M . Consider the collection

o
f all closed sets which contain A . This collection is non empty since at ieast
M is a member of this collection.

Definition. Let Abe a subset of metric space (M, d). The closure of
A , denoted by A is defined to be the mlersecnon of all closed sets which
contain A_ |

ThusA = U {B/Bis closed in M and A C B}.

Note. Since intersection of any collection of closed sets is closed A is a closed |

setl.  Further A D 4. Also if Bis ‘any closed set containing A then ‘

A C B. Thus & is the smallest closed set containing A . | Y
Q. & K

b N
v () Q.\ Y\ OO (\\g A
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Theorem 2.13. A isclosed iff A = A

Proof. Suppose 4 = 4 .

Since A is closed A is closed.

Conversely, suppose A is closed. Then the smallest closed set
containint A is A itself.

A=A,

—

Note. Inparticular (i) ® = & (i) M= M (i) A = A

Example 1. Consider R with usual metric.
(a) LetA = [0,1]. We know that A is a closed sct.

A= A= [0,1].

(b) LetA= (0,1). Then [0, 1] is a closed set containing (0, 1.
Obviously [0, 1] is the smallest closed set containing (0, 1).

. A= [0,1].
Example 2. In a discrete metric space (M, d) any subset A of M is closed.
(refer example 8 of 2.7.) Hence A = A.

Theorem 2.14. Let (M,d) be a metricspace.lLet A, B C M.

Then ) ACB=ACB

(ii) AUB = B

i) ANBCANB
Proof. (i) Let A C B.
Now,B 2 B 2 A.
. B is a closed set containing A .
But A is the smallest closed set containing A .
. ACEB ‘
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Exercises

1. Give an example to show that in a metric space closure of an open

ball B (x, r) need not be equal to the corresponding closed ball Blx, r].

(Hint. Consider a ball of radius 1 in a discrete metric space)

bvrony sfofte det has no [l ;JL‘?“L;:;L‘
2.9 LIMIT POINT

In this section we introduce the concept of limit poin. of a set. This

concept can be used to characterise closed sets and describe tae closure of a

sel.

Definition. Let (M, d) be a metric space. LetA € M. Lety € M. Then

vis called a limit point or a cluster point or an accumulation peint of A 1f

cvery open ball with centre x countains at lcast onc point of A ditfcrent

from x .
(i.c) B(x,r)N (A ~ {x}) = P forall r> 0.

The set of all limit points of A is called the derived set of A and
1s denoted by D(A) .

Note. x is not a limit point of A iff there exists an open ball B (x, r) such that
Bx,r) N (A - {x}) = ®.
Ikxample 1. Consider R with usual metric.

() Let A= [0,1).

Any open ball with centre 0 1s of the form (= r, ) which contains a
pomt of [0, 1) other than 0.

Hence 0 is a limit point of [0, 1).
Similarly 1 is a limit point of [0, 1).

2 is not a limit point of A , since

: 1 1 3 S
“= 2,2+ 5)N[0, 1) = (3, )00, 1) = @
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PDefinttion A subzet A ol g YR R ERG T LR A s b Lo b denae In AT o vvegy

where dense ¢ A -« M

Delindtion A metiie ape e M b aahd 1o e nu.mnlhlu Hotheae e ity o
comntable dense snbnet in M
Pxmmmple 1o Lot M be a mctiie space Leivintty, M b dlenne in N
Ilr—m ANy ountabde et LTS in -,-u-lmltllhh
aample 2 o Bowith wanal weteke Qs demne dn B sinee O - I
F'urther Qi countable
ence R separabile
Pxsmple V1ot M De a dincncte metiie npace
let AC M and A « M *

Sinee A s cloned, A = A
A not denne

Henee any uncountable discrete metuie apace v not separable,

Fxnmple 4 To Ko« Rowith usval metie Q « Q eiondenne net,
vinee QO - Q- R R,
Alvo Q ix countable and henee Q ~ Q| is countable

R« R ixxeparable,

Theorem 217, Let M be a metnie space and A C M . Then the tollowinyg
are cquivalent. (1) A s dense in M
| (1) The only closed set which contains A is M .
(1) The only open set disjornt from A is <D,
(V) A intersects every non cmply open set,

"
(V) A inteects every open ball.
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!
Proof. (i) = (ii).

Suppose A is dense in M .
Then Z= M. 1 (1)

lllll

Now, let F & M be any closed set containing A .
Since A is the smallest closed set containing A, we have A C F .

Hence M C F. (by(1)).

S M= F

.. The only closed set which contains A is M .

(ii) = (iii)

Suppose (iii) is not true.

Then there exists a non-empty open set B suchthat BN A = .

. B~ isaclosedsetand B¢ D A.

Further, since B = & we have B = M which is a contradiction to (ii).
Hence (i) = (iii).

i

Obviously (iii) = (iv).
\ I(iv) => (Vv), since every open ball is an open set.
(v) = (@) ..
Letx € M. Suppose every open ball B (x, r) intersects A .
Then by corollary (2) of theorem 2.16,x € A .

.~ MCA.

But trivially A C M.

“A=M. o |

. A i1sdense in M .
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COMPLETE METRICE SPACES

3.0 INTRODUCTION

The reader is familiar with the concept of convergent sequUENCes
and Cauchy sequences in R-In this chapter we generalise these concepts to
Sequences in any metric space. ‘

3 -
.1l COMPLETENESS 0y 5946@
n) = xl 2 xz g wse

Definition. Let (M, d) be a metric space. Let (x X, «+se DE 2

a . ’ n

sequence of points in M. Letx € M. We say that (x,) &nverge tox if

given € > 0 there exists a positive integer n_ such that d(x, ,x) < € for all
nz n,Also x is called a limit of (x,)) .

If (x,) converges to x we write lim x, = x or (x,) —> Xa

n—

Note 1. (x,,) — x iff for each open ball B (x, € ) with centre x there exists a

positive integer n, such thatx,, € B (x,¢ ) forall n= n,.

Thus the open ball B (x, € ) contains all but a finite number of terms of

the sequence.

Note 2. (x,) — x iff the sequence of real numbers (d(x, , x)) — O.
Theorem 3.1. For a convergent scquence (x,) the limit is unique.

Proof. Suppose (x,) — x and (x,) — y-

Let € >0 be given. Then there exist positive integers ny and n,

h th |
AT S e, I s Jdaw ) 2g v nde |

1Y Xn > o DY f
g}go N2 AWy cay L ¥NZNY |

Scanned by TapScanner



I —

N v ?r\*-,,f\’% {,
A M Y

« j:fﬁ \ ‘cf*l 0 e 81
' COMPLETENESS

ot

t$(quij 4

Le for > 1ty and
d(x, ,x) < 5 ¢ (or all n I

2
L forallnz ny.
d(v, YY) < 3 t -

IVC | ‘h th " .
et m be a positive integer St hthat mx oy, )

Then d (x, y) = AL PR Y+ d (X, y)

1 1
T — 1 = B,

. d(x,y)< €.
Since ¢ > 0 s arbitrary d (v, y) = 0.
XY
Note. In view of the above theorem if (v,) — v then X i5 called the [unt
of the sequence (v,,) .
The connection between the limit of a sequence and limit point of a sct

is given in the following theoren.

Theorem 3.2. Let M be a metric space and A & M. Then
(i) x € A iff there exists a sequence (v,) in A such that (x,) — Xx.
(if) x is a limit point of A i{I there exists a sequence (x,,) of distinct

points in A such that (v,) — x.

Proof. Let x € A.
Then x € A UD(A) ( by theorem 2.16 ).

X E A orx € D)
Ifx € A, thenthe constant SCQUENCE X, X, ceeeeees 1S & SCQUENCE 1

A convernging to x .

Ifx € D(A) then the open ball B (v, -};) contains infinite aumtx
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of points of A ( by theorem 2 15 ) '

. We can choose x, € E (x, %) M A such that

X ¥ Xt Ho, e ,X,_1 foreachn

s (x,) is a sequence of distinct points in A .

Also d(x, ,x) < ~ for all n.

n

. lim d(x, ,x)= 0.

n —= 0O

n?

s (X)) =X
Conversely, suppose there exists a sequence {x,,) in A such that
(¢} — x
Then for any r > O there exists a positive integer 7, such that
dx, ,x)< r forallnz n,.
. x, € B(x,r) forall nzn,. .- (1)
s Bx, )N A= P
- x € A (by corollary 2 of theorem 2.16 ).
Further if. (x,) is a sequece of distinct points, B(x,r) NA isinfinite.
. x € D).
- x is a limit pointof A . @
Definition. Let (M, d) be a metric space. Let (x,) be a sequence of points in

M. (x,)is saidtobea @mchy sequel@inM if gi vene > O there exists a
. (x.)is ¢

positive integer 11, such thatd(x,, ,x,) < ¢ forallm,n= n,.

Theoren@' Let (M, d) be a metric space. Then any convergent sequence

in M is a Cauchy sequence.
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Proof. Let (x,) be a convergent sequence in M convergingtox € M .

Lete > 0 be given.
Then there exists a positive integer n_ such that

la'(xn,.x) < %l’:‘ foralln= n.

codx, ,x ) s (dx, ,x) + dlx, xp,)
< -%e+ -%E foralln,mz n,.

= ¢ forallm,n= n,.
Thus d(x,,, x,,) < € forallm,n=z n,.
. (x,) is a Cauchy sequence.
Note. The converse of the above theorem is not true.

For example, consider the metric space (0, 1-] with usual metric.
(3) is a Cauchy sequence in (0, 1].
n

But this sequence does not converge 10 any point in (0, 1].

Definition. A metric space M is said to be E)mpleteT if every Cauchy -

sequence in M converges (0 a point In M .

Example 1. R with usual metric 1s complete. This is a fundamental fact of

elementary analysis and a proof of this fact is given in section 6.3.

Note. The metric space (0,1] with usual metric is not complete (refer note
given above)
Example 2. C with usual metric is complete.

Proof. Let (z,) be a Cauchy sequence in C.
Let z, = X, + Iy, where X, , Yy, E R.
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We claim that (x.) and (v,,) are Cauchy sequences in R.

Lete > 0 be given.

Since (z,) is a Cauchy Se€quence, there exists a positive ini€ger

N, suchthat |z, - z | < ¢ for aln,mzn_.
Now, |x, - x; |= |z,- z_| and Y=y, |s |2, - Zn

Hence|x - X <
E fora]l nmp2
n mI ’ na Elld
| Y, = ¥, | < € for all nmzn,

. (x,) and (y,) are Cauchy Sequences in R.

Since R is complete, there existx;y € R such that (x,) — x and

On) = y.
Let z= x + iy. We claim that (z,) — =z
We have [z, - z|= | (x,, + iy,) - (x+ iy) |
= &, —~ )+ ily -~ y) |

S|, - x|+ |y, -y ... (1)
Now, let € > 0 be given. |

Since (x,) — x and (y,) — y there exist positive integers 17 and

1
ny suchthat |x, - x|< 5 € forall n= n; ang

|y, - y|< %e forall nz n, .
Let n3 = max {n;, n,}.

_ 1 1
From (1) weget|z - z| < 2 €+ &= ¢ for all nz= n,

S Z) > = !

. C is complete.
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I IsCrele e ac e o Connplets
Exulan( 3, Any discrets melnic spatd BRI

]"i-':juf. | £1 (M; d) bie # discrete et SITEL (.

Let (x,) be s Cauchy sequein s in M
Then there exists a4 positive integer i, S b thit

d(v  r. )~ fost all 2t,m = n,

T ]

7
Since d is the discrete merric distance between any two points jg
either O or 1.

dx, ,x,)= O forall n.me n,

x, = x, = x (say) forall nen, .

g

d(x, ,x)= O faralln =z n, .

(x,) =+ x. Hence M ods complets,

Proof. | «£i (xp) be a Cauchy sequence in R”

. py , ). et - O begiven.

Then there exists 4 positive integer n, such tha

d{xp ,x:#) < v for all p, g« n,.
= T

, pd
f.. (;KP; - X, ) < v dorwll poygen,

! l.xample 4F}{ " with usual metric is complete,
/

f

(

:

n
_ 2 Z
...*EI l(xﬁ’ Xy ) <t Nor allp, g e on,.

Foreachk= 1,2, ... , N we havye

lxﬁj.. X’flp 1," k101 all V4 = nﬂ ‘

""‘T’W' b ot e
-
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~.'/(x, ) is a Cauchy sequence in R foreach k= 1,2, ..., n.
Since R is complete, there exists Yr € R such that (ka) - Y.
Let y= (v, ¥, -, y,) . We claim that (x,) =y

Since (ka) —> Y there exists a positive integer m, such that

|xlpka— ykl{ % forall P mk.

Let m,= max {m, m,, ....,m} .

Then d(xp,y) = [E (xpk_ Yi )2]

2 1/2
< [n(e/Vn)" 1" forall p= m,. '
= ¢ forall p= m,.

Thus d(x,, y)< € forall p= m,_.

(xp) — y Hence R" is complete.

@ample 5. I, is complete.

Proof. Let (x,) be a Cauchy sequence in/; .

+ Let x, = (:c‘,:,1 ) aeene s Xp g e )

Let € > 0be given. Then there eXists a positive integer n, such .
thatd (x,, x,) < € forallp,q= n, | i
' 1/2

(i.e.) {z (x, - x, )Zl < ¢ for all p,g= n,
n=1" &+
; — 2«:t:zf(:n:a]l;::uqz-_-i't' ----- (i)
- l(xpn qn)f ’ (7]
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Foreach = 1,2.3, i we have

lIPn = anlq e for all p,qz n,.
. (x, ) is a Cauchy sequence in R for each .

Since R is complete, there exists y, € R such that
(xpn) = Y. (2)

We claim thaty € [ and (x;) — y.

/

For any fixed positive interger m , we have
éh 3 . 2 .
2 l(xpu Xy )" < € forall p,gq= nyg (using (1))
-
Fixing ¢ and allowing p — <o in this finite sum we get
m 4 ,
2 Op—x5 ) = e’ forall ¢ = n, (using(2))
n=1 =

Since this is true for every positive interger m

o . 2 2
.2 = xq") <=¢ forall g=n,.  ..... 3) -
n=1
oo 172 - 1/2
N ® 1. -|Z ly,-x, +x, |
oW, l ly" = i}’n q, g
7 o= n= )

1/2 1/2

w . lFoo
5[2 Iyn—anlz] +lE quﬂlz]
n= 1 ne- 1

(by Minkowski’s inequality)

o 1/2
se+ | X I, I
ne 1 7

—— ———

for all g= n, (by (3))
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' L
| 7 1
Jei , ! r‘z‘r J
ey 0 !/ ST PO R I CAINIEIVES.
.’ J ' } ff”i | r
.-r o .’ ;
1/7
My
J | I./ WATIVIE 1
.|y, VTIPS 7

o= |

K y = ’f/

Also (5) pives dly r) = v for allg=n, .

(»VP) >y,
[, dn connplets
lhif-‘:t.,/!- %'llb.spﬁrf' r;/ 17 rr)m/;/frfﬂ Petrie spr need not be ﬁr;mp/ete.
For example B with usual metric is complete. But the subspace (0, 7]
ionotcomplete, (refer eznmple 1)
In the next theorem we give a necessary and sufficient condition for 2
subspace of a complets metnc apace v be complets.

.;hem-cm,@ A sulset A of a complete metric space M is complete iff A

is Closed,

Proof. Suppone A s complete.
To prove tlest A is closed, we shall prove that A contains all its

limit points,
[t x beaJimit pointof A .

Then by theorem 3.2, there ezists a sequence (x,) in A such that

(Xn) ~* X
Since A s complete x = A

A comains all ity limit points.

Hence A s Cclosed.,
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- el T A " 4 M g
Conversely, Jet A be closed subset of

' o cancehy sequence in A
Let (x,) bea Cauchy seq

- ; ; iince M 15 comple
Then (x,) 18 @ Cauchy sequence inM alsoand sin plete
| n’ " '

'Y g gequence inA convergi
| xists x € M such () ~* x.Thus (x,) 154 sequence ging
tll.r‘.i ll" L] i [ L # s .

O X .

.. x € A. ( by theorem 3.2. )

e

Now, since A is closed, A = A .
S .
i rEes 1« int in A
Thus cvery Cauchy sequence (x,)in A converges 10 a pol
.. A 1s complete.
Note 1. [0, 1] with usual metric is complete since it is a closed subset of th

complete metric space R

Note 2. Consider Q. Since 6 = R, Q is not a closed subset of R‘

Hence Q is not complete.

Solved problems

Problem|1 LetA, B be subscts of R. Prove that A x B =AxB.

Solution. Jet(x,y) € A X B .
.. There exists a sequence ((x, , y,)) € A x B such that

((x,,y,) — (x,y) (bytheorem 3.2)
= x,) ~— x and (y,) => ¥.
Also (x,) is a sequence in A and(y,,) is a sequence in B.
X E A and y € B. (by theorem 3.2.)
eyl & A x B.
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3. Detennine which of the following subsets of R are complete.

O @b G) (@ b] (i) [6,b6) (V) [ab]

(V)R- Q (vi) {0,1,2,...,1, ..}
- rn
- 1
(vii) {1, 3, % L) (viii) [0, 1] U [2, 3]
. Let (M,  4,), (Mo i) s (M, ,d ) be complete metric spaces.
Let M= M; x M, x ...... x M. .let x = (xy, X3, ... , X,,) and

n
¥= ()1 Y2, coen s Yo ) EM. Define d(x, y) = 3 d{(x;, y;) and

1 = 1]
d'(x, ¥) = max {d; (x;, y.)} Prove that (M , d) and (M, d’) are complete

meIrc Spaces.

S. Let M be the subspace of I, consisting of all sequences (x,) such

[ Hint. Let (@) = (1,=, ... Sl 0,0,...). Prove that ((a,)) is a

Cauchy sequence in M but is not convergent in M .]

The following theorem provides a characterisation of complete metric

spaces.
Theorem 3.5. (Cantor’s Intersection Theorem)

Let M be a metric space. M is complete iff for every sequence (F ) of

non-emptly closed subsets of M such that

F{2F;2 ... 2F,2 ... and(dF,) — 0

M F,, is nonempty.
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Proof. Let M be a complete metric space.
Let (F”) be a sequence of closed subsets of M such that

I = B 2 s, =2 F S e Eemee (1)
and (d(F,) — 0. e (2)
We claim that N F .= O.
ne |
For cach positive integer n, choose a pointx, € F, .
By (1), Ky Xy g 19 Xy a3 500e all HE DT, o
(ie.) x,, € F,, foral mzn. ... 3)

Since (d(F)) — 0, given € > 0, there exists a positive integer

N, ,suchthat d(F ) < ¢ forall n > n, s
In particular d(Fna) < £. S (4)
Sod(x,y) < e forall x,y € F - '
Now, x, & £, forall m=z n,. (by (3))

wMmnz o, = x..x. EF .

o

= d(x,, x,)< €. (by 4)
. (x,,) is a Cauchy sequence in M .

Since M is complete there exists 2 pointx € M such that

(x,) — x.
We claim thatx € N F, .
nw |
Now, for any positive
Integern, x, . x
HO'%p g 15 secenaa lSﬂSﬁqUﬁnC,c 1R

F, and this sequence converges to x .

Y X & Fn (by theorem 3.2)
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But F: is closed and henc¢ F . =F,.

i IEFH'

5 xEﬂFn

n= |1

Lﬁt F]-_-.- {_X'l,),z, ...... ,xn, ...... }
F2= {xz,X3, ...... ’A'ﬂ" ...... } |
Fﬂ= {xﬂ’xﬂ"'l, ............. }

Clearly Fl QFZ ..D_.i. ......... _D_an .....

b Fyad P covmenes R

(F':) 1S a decreasing sequence of closed sets.

Now, since (x,) is a Cauchy sequence given e > 0 there exists 2

positive integer n,, such thatd(x, ,x_ )< & foralln, m > n,.

.. Forany integern 2 n,, the distance between any two points of

F, is less than e.

o d(F,) <t foralln > n,
But d(F,) = d(F).

d(F;) <t forall n> n,
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o (d(F)) - 0.

Hence M F, = @

nw-= |

Let x€M F,. Then x and x,,EF;

nw |

Sod(x, ,x) s d(F,).
“d(x,,x)< e forall nz n, (byS5)
5 k%) X

. M 1s complete.

o9

Note 1. In the above thecorem (M F,, contains exactly one point.

nw |

For, supposc (N F,, contains two distinct points x and y.

r.l-ll

Then d(F,) = d(x, y) forall n.

. (d(F,)) does not tcnd to zero which is a contradiction.

-. (M F, contains exactly one point.

nw ]

Note 2. In the above theorem () F, may be empty if each F, is not close

nw= ]

For example, consider F, = (0, -,-11-) in R.

Clearly F{ 2F32 ... 2F, 2 ccenns rand

n

(d(F,)) = (‘1‘) —'(Q as as n — oo,

But N F,= @. y
nw 1 &
. .-.\.hk\f\ﬂ
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3.2 BAIRE'S CATEGORY THEOREM

In this section we prove a fundamental property of complete metric
space called Baire’s Category thecorem.

Deﬁmtlon A subset A of a metnc space M is said to be C'Vhere de }F& g\
M !f Int 4 = (I)\

ﬁ

5
Defmihon A subset A of a metric space M is said to be of first category in

M 1 A can be expressed as a countable-unjon of nowhere dense sets.

A set which is not of first category is said to be of second category.

Note. If A is of first category then A U E where E,, is nowhere dense

, ne |
~ subsets in M.
Example V. InR with usual metric A = {1 —li- -—15, ..... ,-}:,‘ ....... } is nowhere
dense.
For, A= A UD(A) = {0, 1 FE

Clearly IntA = &.

H‘: D(ﬁ7'
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rem 3.7 (Baire’s Category o
Any complete metric space 18 0J .

e a complete metric space.
m that M is not of first category.

Theorem)
eC ond care gory.

Proof. Let M b
We clai

e A 4 l (._r th ll‘ M‘-

o0

We claim that U A, > M.

n= 1

Since M is openand A; is nowhere dense, there ex.sts an open ballg
B, of radius less than 1 such that By is disjoint from A . (refer theorem 3§

Let F; denote the concentric closed balliwhose radius is-;l;- time

st

that OfBl

Now Int F 1 1S open and A2 1S nowhere dense.
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Int Fl contains

an : ‘ '
an open hd"lfz of radius less than !

S such th;
B, 1s disyoint {fyrom A . : B

J C CO1 b i [" B
2 1Cent 1C (lOSf.‘d ])H” th]Hﬂ I'TI(”UH- iﬁr l til'""" th:ﬂ
OfB o NOW ll’ll t“; C : ' r f
p) Ji'} | A Up n d“d A’} 15 HDWIJC ic d{‘:nHL.

".I I ln‘ J CO] - .
z llﬂ] i |) 3 . ' . - i Y *U(./ I,

B, 1s disjoint from Aj.

Let F3 be the concentric closed ball whose radius is é times that

0fB3.

Proceeding like this we geta sequence of non-empty closed balls

F, such that o lb, 0 = F. 2 ... and d(F,) < e

2
Hence (d(F,)) — 0 asn—> o0, |

Since M is complete, by Cantor’s intersection theorem, there

€Xists a point x in M suchthat xE N F,,.

nw 1

Also each F, is disjoint from A .

Hence x ¢ A for all n. | |

X E L) A

n= 1

- U A, =M. Hence M i1s of second category.

n= 1

Corollary. R is of second category.

Proof. We know that R is a complete metric space. Hence R is of second

category. | '

 ———
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Note. The converse of the above theorem is not true.

(i.e.) A metric space which is of second category need not be complete.

For example, consider M = R - Q . the space of irrational numbers.
We know that Q is of of first category.

Suppose: M is of first category. Then M U Q = R is also of first
category which is a contradiction.

. M 1s of second category.
AlsoM is notaclosed subspace of R and hence M is not complete.

Solved problems

| Problem 1. Prove that any nonempty open interval (@, b) in R is of second
category.

Solution. Let (a, b) be a nonempty open interval in R.
Suppose (a, b) is of first category.
Now, [a, b] = (a,b) U {a} U {b}.
~. [a, b] is of first category.

But [a, b] is a complete metric space and hence is of second
category which is a contradiction.

.. (a, b) is of second category.
Problem 2. Prove that a closed set A in a meric space M is nowhere dense

iff A® is everywhere dense.

Solution. et A be a closed set in M.

A=A . (1)

Supp'oscA is nowhere dense in M.

Iht A= .
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. Int A= (by1).  eeees (2

Now we claim thatF = M.

Obviously A°CM. ... (3)

Now, let x € M. Let G be any open set such that x € G.
Since Int A = &, we have G ¢ A.

" GNA® = .

L xEAS ( refer Corollary 3 of theorem 2.16 )

- MCAS RO - |
. By (3) and (4) we have M = A°.

“. A is everywhere dense in M.

Conversely let A be everywhere dense in M.

L A= M.
We claim that Int A = &.
Let G be any nonempty open set in M.
Since A = M, we have G N A€ = .

~“ GCA

. The only open set which is contained in A is the empty set.
~ IntA= &

~ IntA= ®. (by (1))

. A is nowhere dense in M.
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CONTINUITY
4.0 INTRODUCTION

In chapter 3 we discussed the concept of co
IN any metric space.

de 3 ‘ : 1
pends on the usual metric of the real line. Hence the concept of continuity
can be extended for functions def;

natural way,

nvergence of asequence
The definition of continuity for real valued functions

ned from one metric space 1o another in a

4.1 CONTINUITY
Definition. Let (M,, dy) and (M,, d,) be metric spaces.

Letf: M; — M, be a function.lcta € M, and | € M,. The function f is

said 1o have a limit as x — a ifgiven e > 0, there cxists & > 0 'such that

0<dilx,a)< d = d, (f(x),]) <
We wri__ﬂﬁim fixy= 1.

" L ol ¢

Definition. Let (M'j, d{) and (M,, d,) be two metricspaces.Leta € M. A

e ————

function f : M; — M, is said to belcontinuous at a}f given € > 0, there

P

exists O > Osuch that dy (x,a)< & = d, {f(x),j(a)) < e.
f is said to be continuous if it is continuous at every point of M .

Note 1. f is continuous ata iff lim f(x)= f(a).

X ™ a

Note 2. The condition dy (x,a) < 0 = 4d; (f (x), f(a) ) < & can be rewritten
as (i) x€ B(a,d) = f(x) € B(f(a),¢) or
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(i) J(B(a,8)) © B(f(a),e).

Example §. Lot (Ml,d,) and (M5, d,) be two metric spaces.  Then any

constant function f : M —» M, 15 continuous.

. il T st E

““““““““ T _ (
Proof. Lct f: M —= M, be given by [(x) = a where a € M, is a fixed '&D" v

clement. 0O

Letx € My and &> 0 be given.

Thenforany 8> 0, f(B(x,0)) = {a}) € B(a,e).
" [ 1s continuous at x . c
Smee x € M, is arbitrary, f is continuous.

Example 2. Let (M, d|) be a discrete metric space and let (M5, dy) be any

| mcince space. Then any function f . A, — M, is continuous.

i.c any function whose domain is a discrete metric space is continuous.

Proof. Let x& M. Let € > 0 be given.

'

Since My is discrete forany d < 1, B (x,d )= {x}. '

© (B 8)= YW} € BYW,e) ;

. f 1s continuous at x . *

We now give a characlerisation for continuity of a function at a i

point in terms of sequences converging to that point. |
Theorem 4.1. Let (My,d) and (M5, d,) be (wo metric spaces. ;
Let @ € M;. A function f: My — M, is continuous at a iff (x,) —»a ;
=(f(x,)) — f(a) l
| Proof. Suppose f is continuous at a . | A /% {1
Let (x,,) beasequence in My such that (x,) — a. o ' : :

| " ' an
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We claim that ( f(x,)) — f(a).
Let € > 0 be given. By definition of continuity, there exisls
6> 0 suchthat dy (x,a)< & = d, (f(x), fla)) < €. - (1)

Since (x,) — a, there exists a positive Inlcger 7g such that

d] (.I'

n, )< O forall nz ng.

©dy (f(x,), f(a) < € forail n= n, (by (1))

(f('rn)) - f(ﬂ)*
Conversely, suppose (v,) = a = (f (x,)) - fa).

We claim that { 1s continuous at @ .

Suppose f is not continuous 3t a .

Then there exists an € > 0 such that foralld > O,

fB(a,d) & B(f(a), &)

In particular f (B (a,-};) ¢ B(f(a), €).

Choose x,, suchthatx, € B (a, -:-;) and [ (x,,) & B (f(a), e).

o dy (x,,a)< ~,andd, (f(x,), f(a)) = €.

n
s (x,) > a and (f(x,)) docs not converge to f (a) which isi§
contradiction to the hypothesis.

. f 15 conlinuous at a.

Corollary. A function f : M1 —> M, 1is conlinuous iff

(x,) = x = (fix,)) = f).

We now characterise continuous mappings in terms of open sets.
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M » (_M ) wl (A’!'hd?,) he {wo metric spaces.
‘ 122} “

ThEOI"El’ﬂ 'z' I . M } - » . .

| : mn wnenever (G o

f:M —-a-@s <ontinuous iff f~ (G) 1 open : 15 Opé)
. Vi |

imn A!z . B :

(i.e.) f is continuous iff inverse image of every open set g oper
1.C.

proof. Suppose f is continuous.

Let G be an open setin M, . | I

We claim that f I(G) is open 1n M, .

If & l(G) is empty, then it is open.

r Let { 1(G)=®-
Let x € f"l(G). Hence f(x) € G .
Since G is open, there exists an open ball B (f(x}, &) such g, |

B(f(x); E) ,(; G. c  eeenas (1)
Now, by definition of continuity, there cxists an open by |

B (x, 5) suchthat f (B (x,0)) € B (f(x), ¢).
X B (J;, 8)C G (by(1)).
.~ B8 C f G).

Since x € f'](G) is arbilrary,j_l(G') is open.

Conversely, suppose {~ 1(G‘) is open in My whenever G is openi; '

M, . We claim that f is continuous.

=]

Lx:t.xEMl.

Now, B (f(x), € ) is an open set in M, .

f"1 (B(f(x),e))is openinM; and x € f—l(B (f (x), €)) .
. There exists § > 0 such that B (x,d5) C - 1(f(x);5))'
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S S BN CB(f(x), o).
“ /s continuous at v
S' ey T ' ‘ '
MCEx &€ M, is arbitrary { is continuous.

Note 1. If 1 - M, is |
L] M) —~ M, is continuous and G is open in My, then it is no
necesary that f(G) is open in M, .

(1.e.) Unde

L4 continuous map the image of an open set need not be
an open set. F

For example let My = R with discrete metric and lctM, = R witl
usual metnc.

letf: M, — M, be defined by f(x) = x. /
Since M, is discrete every subset of My 1s open.
Hence for any open subset G of M,, [ Y(G) is open in M, .
“. f 1s continuous.
Now, A = {x} is openin M, .
But [(A) = {x} is not open in M,.

Note 2. In the above example f is a continuous bijection whereas

- ] 5 .
I "My — M; is not continuous.

For, {x} is an open set in M, .
s R 1 § i .
(f ) "({x}) = {x} which is not open in M, .
f~ ! is not continuous.

Thus 1f f is a continuous bijection, - ! need not be continuous.

We now give yet another characterisation of continuous functions

in terms of closed sets.
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@orem 4.3. Let (M{,d;) and (M,, d,) be two metric spaces. A function

f: My — M, is continuous iff {~ *(F) is closed in M, whenever F is closed
mn Mz .

Proof. Suppose f:M; — M, is continuous.
Let FC Mz be closed in Mz "

~ F° isopeninM,.

~ £ YF°) is open in My .
But f~'(F) = [f ") .
B 1(1‘-‘) is ciosed in A, .

Conversely, suppose f~ '(F) is closed in M ; whenever F is cldscd T, Mz .

We claim that f is continuous.

Let G be an--of)cn set in M, .

~. G° isclosed in M, .

o 7 HG®) isclosed in M .
% T (G) ]° is closed in M .
~ 1 (G) is openin M .

~. f 1is continuous.

We give one more characierisation of continuous function in'terms
- of closure of a set. |

Theorem 4.4 Let (M, d;) and (M,, d,) be two metric spaces. Then
" f: My — M, is continuous iff f(4) C f(A) for all A C M,.

- Proof. Suppose f is continuous.

Scanned by TapScanner



108 CONTINUITY

Let AC M, . Then f (A)C M, .

Since f is continuous, 1~ '(f(A)) is closed in M .

Also f~1(f(A)) 24 (since f(A) 2 f(A))
ButA is the smallest closed set containing A .
. ACf (@A)

- f(A) C fA).

Conversely, let f(A) C f(A) for all A C M,.

To prove that f is continuous, we shall show that if F is a closed
setin M,, then ](F) Is closed in M, .
By hypothesis, f (f~ "(F)) C ff~ "(F)
CF.
= F ( since Fis closed.) .

Thus f (f~ '(F))C F.
IR C W)
Also £ '(F) C TG .
R =T,
Hence f~ '(F) is closed.

. f 1is continuous.
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A= {1} = {1}
AT fA)
. f 1s not continuous.

Problem 3. 1et M; M, , M; be metric spaces. If f : M; — M, and

g: M,Z — M3 are continuous functiors, prove thatgo f : M; — M3 1s also
continuous.

(i.e.)‘ Composition of 1 wo continous functions is conrinuoust\

. _———___—_______—————-—ﬂ
Solution. op€nin M5 .

e

Since g is continuous, g 1(GJ is open in M, .
Now, since f is continuous, f_ l(g' ](G)) 1s open in M, .
(i.e.) (8o f) '(G) is openin M, .

. g0 f 1s contunuous.

: @lem 4. let M beametnicspace. letf:M— R andg:M—R be -~
two continuous functions. Prove that f + g: M — R is continuous. '

3
i

Solution. let (x,) be a sequence converging to x in M.

Since f and g are continous functiors, (f (x,)) = f (x) and
(g(x,)) — glx). (by theorem 4.1)
L (fE)+8b)—=fx)+ gx).
(ie) (F+8)x))— ([ + 3)3)
. f+ g 1s conunuous. |
Problem 5. Let f, g be continuous real valued functions on a metnc space
M. let A= {x/xE€ M and f(x) < g(x)} . Prove that A is open.
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Solution. Since f and § 4are continuous real valued functions on M

f- 2 isalsoa coninuous real vajued function on M .
Now A= {x e M/ f (x) < g (x))

= {xE M/ f(x)- g (x) < 0}

= {xEA!/(f'—.g)(x)-: 0}

{xE M/(f-g)xE(-m,O)}.
= -8 ' {(-=, 0).

Now, (- = Q) is openin R, and f- g is continuous.

Hence (f - g)~ ! {{(=20, 0)} is open in M.
. A 1s open in M.
Problem §. Iff:R— R and g : R — R are both continuous functions on R
and if /i : R? — R? is defined by / (x, y) = (f(x), g(v)) prove that i is

.Continuous on Rz.

Solution. [ et (x, , Y,) be a sequence in R?Z converging to (x, y) .
We claim that (4 (x,,¥,)) converges to /1 (x, y) .
Since ({x Xy 5 ¥0)) = (x, y) in R? , (%) = x and (y )=y in R.
Also f and g are continuous.
- X)) = f (x) and ¢ 0 = g ().
). g ) = (F (v, g ().
-, y)) = A(x,y).

. A 1S continous on R 2 .

Problem 7. Let (M1, d) be a metric space. letqg € M . Show that the function
f:M — R defined by f (x) = d (x, a) is continuous.
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Solution. Ietx € M.
Let (x,) be a sequence in M such that (x,) —> x .

We claim that (f (x,)) — f (x).

Lete > 0 be given.
Now? I f ("r") - f (’k) I - Id(x” :la) = d(x ’ a) I = d(xn ? 'x) .

Since (x,) — x , there exists a positive integer n; such that
dx, ,x) < & foralln = ny .

S f () - f()]< € for all n= ni .

o (f () = f ().

. [ is continuous.

Problem 8. Let f be a function from R% onto R defined by f (x; y) = x for

all (x, y) € R2 . Show that f is continuous in I{“‘B ;

Solution. Let (x, y) € RZ.
Let ((x,,, y,)) be asequence in R - comﬁrerging to (x,y) .

Then (x,) —x and (y,) —y.
L (Y = () > x= f(x,y).
S ([, 30)) = e, ).

. f is continuous.

f Problem 9. Define f : I, — I, as follows. If s € [, is the scquence

51, §9, ... let f (s) be the sequence 0, 5y, 5y, ..... Show that f is continuous
S onl,. .
, Solution. Lety = (yq, yg, «ceees . e Y oW

Let (x,) be a sequence in /, converging to y.

"H-i-n. !
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Let x, = (Jr:‘,11 ) Xy woeee Xy caee ) .

Then (xnl) —¥ Y1 (xnz) > Yoy e (xnk) = By s
LD = (0 X s s Xy e )= (0,91, V2 s s Y ) = SO
(&)= ).

. { is continuous.

Problem 10. Let G be an opent subset of R. Prove that the characteristic

1f x &€ G

. is continuous al every point
0if x &€ G |

functiononG defined by y; (x) = {
of G .

Solution. Letx € G so that ¥ (x) = 1.
Lete> 0 be given.

Since G is open and x € G, we can find a d > 0 such that
B((x,8)C G.

%G (B (x,8) C %G (G)

- {1k
C B(1,¢).

Thus x5 (B (x, ) € B (xg () , €)
* g 1S continuous at x .

Since x € G is arbitrary, ¥ is continuous on G .

Exercises

I 1if x< O ;
1L Laafi K+ R be defined by f (x) = {Zif o O Prove that f 1is

1ot continuous by each of the following methods.

(i) By usual €, method.
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K., Lt [ and g hecontinuous real valued funetions defined on a metrie
spice M Lot A= (v € M/ [(x)«< g(x)). Prove that A is open.

(i, A= (f - g e, ),

Qo et My oand My be two metne spaces and let A © My .
oMy =My v continnous, show that f |40 A — M2 is also continuous.

4.2 1HOMEOMORPHISM

I)rllnilléﬂ.ﬁl et (M, dy) and (M, d,) be metric spaces. A function

[ My = M, wcalled n homeomorphism if
)/ i1 — 1 and onto

(i) [ I8 continuous,

(i) /' is continuous.
M, and M, arc ss '~ be homeomorphic if there exists a |

homecomorphism [ M, > M, . i
Definition. A function f : M; —> M, is said to be an open map if f (G) is |
openan M, forevery openset G oin M . I

(1.e.) f s anopen map if the image of an open set in M is an open

setin M, .

-

[ is called a closed map if { (F) is closed in M, for every closed
set M oan Ml .

Note 1. et f: M, —> M, be a 1~1 onto function. Then s

continuous iff f is an open map.

For, f~ ! is continuous iff for any opensetGin M, (f s ik (G)is

openin M, .

s
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1 is continuous iff f 1sa closed map.

Note 2. Similarly f _‘
map. Then the following ar
e

Note 3. Let f:M;—> M be a 1- 1 onio

équiva]enl. |
(i) f isa homeomorphism.

(ii) f is a continuous Opel map.

(iii) f is a continuous closed map.

Proof. (i) <> (ii) follows from Note 1 and the definitio:1of homeomol-phmm

(i) P (iii) follows from Note 2 and the definition of h°m¢0mor.
phism.

Noted. Let f : M; — M, bea homeomorphism. G & M, is openin M, g
f(G) isopeninM, .

For, since f is an open map G is opén inM{=> f (G) is open in M, .

Also since f is continuous f (G) is openin M, = : (f(G))=G is open
lﬂ Ml

~ G isopeninM, iff f(G) isopeninM, .
N

Conversely,if f : M; = M, isa 1- 1 onto map satisfying (1) then

fre

+ f is a homeomorphism.

. Thus a homeomorphism i Ml — M, is simply a 1- 1 onto map between the

pomts of the two spaces such that their o
~ dence with each other.

pen sets are also in 1- 1 COITespon-
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Hence [ is not continuous.

Thus any bijection f: M| — M, is not a homeomorphism.

Hence M is not homeomorphic to M.

Definition. Let (M;,dyy and (M, , dj) be (wo metric spaces.
Let f: M{ — M, be a 1- 1 onto map. [ issaid to be an isometry if
dy(x,y) = d, (f(x),(y)) forallx,y € M;. Inother words, an isometry

is a distance preserving map.
M, and M, are said to be isometric if there exists an isometry f from

M, onto M,.
Kxample 6. R? with usual metric and C with usual metric are isometric and

3 R* — C defined by flx, y) = x + 1y is the required 1sometry.

Proof. Letd; denote the usual metric on R* and d, denote the usual metric
on C.
Leta= (x;,y,) and b= (x;,y,) € R

Then dy (a,b) = V(x; - x)° + (y1 - ¥2) °
= | (= x)+ i(y; = y2) | i
= | (e + iy = G2+ iy)) | |
= dy(fla), f(b)°

. [ is an isometry.
. Example 7. Let d; be th.e usual metric on [0,1] and d, be the usual metric on 1‘
[0, 2].

The map f: [0, 1] — [0, 2] defined by f () = 2x is not an isometry. 4

Proof. Let x,y € [0, 1].
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4.3 UNIFORM CONTINUITY

Introduction. In this section we introduce the concept of uniform
continuity,
Let (M, ,d;) and (M, , d,) be two metric spaces.

Let f:M; — Mz be a continuous function. Foreacha € M, the

following is true.

Given e > 0, there exists 8 > O such that
dy(xa)< d=>dy (f(x), f(a)) < e.

In general the number 8 depends on & and the point @ under

cc]msidcralion.

/

For example, consider f : R — R given by f (x) = x°.
Let a€ R. Lete> 0 be given.
We want to find 6 > 0 such that

| x - a|l<d=|f(x)- f(a)]< ¢. i a0 L)
| Clearly, if 8 > 0 satisfies (1), then any 8; where 0 < 01 < & also
satisfies (1). |

Hence if there existsa d > 0 satisfying (1) then we can find another
~ 8, 'suchthat 0 < 0; < 1 and 3, also satisfies (1).

- Hence we may restrict x suchthat|x- a|< 1.

T a-1<x<a+ 1.
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X+ a< 2a+ 1.
: ¥
S Af@-f@l={x"- a*|=|x+ a||x- a
<|2a+ 1| |x- a] if {x-al|<1.

Hence if we choose & = min {1, |2aﬁ+. n |] then we have

| x~al<d=|Ff(x)- fla)|<¢.

Thus, in this example we see that the number & depends on both
€ and the point @ under consideration and if 2 becomes large, & has to be
chosesn correspondingly small. In fact, there is no & > 0 such that (1) holds
ferall a .,

For, suppose there exits & > O such that

|x-aj<d=|f(x)- f(a)]< ¢ for all a€ R.

Take x= a+ =9

=

Clearly, | x - a|=%6«c: 6.

Sl fx) - fla)]< e

s @+ 28 - @< e
e

J | r—

2 3}6[ d+ 2a|< ¢.

L

However this inequality cannot be true for al] a& R, since by

taking a sufficiently large, we can make :1— & | % 0+ 2al> e.

Thus, there isno 8 > 0 such that (1) holds for all a € R.

We now consider another cxample.
letf:R—= R be given by f (x) = 2x.
leta€R. Lete> 0 be given.

Then [f(x) - f(a)|= |2x - 2a]|= 2|x- a].
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1 ¢ then we have

. If we choose 0 = 7
 x-al<d=1f0 - f@]<e.

]

Here & depends on € and notan a .

(i.e.) foragivené = 0 we are able to find 0> 0 suchthatd wory.
1.6, 24 ~ _

uniformly for all a € R.

Definition. Lcl (M, d;) and (Mz-‘-ﬂdz} be metric spaces. A functiop

f: M, = M, issaid to b@'ifonﬁly’ C@}}iﬁ}}ﬁ;ﬁou My st givene > () there
f oMy = My ! e
exitsts & > 0 such that dq (x,)) < 6=:d2(f(x),f()’))< g .

Note 1. Uniform continuity 1s a global condition on the behaviour of

mapping onasetso that itis mea ningless to ask whether a functionis uniformly

contir *ous at a point. Continuity 1S a local condition on the behaviour of 4

function at a point.
Note 2. If f : M; — M, is uniformly continuous on M, then f is continuous

at every point of My .

Moreover for a given € > 0 there exists 0 > O such that

x,yEM; andd; (x,y)< d=d, (fx),f () ) < &.

Thus, uniform continuity is continuity plus the added condition that for a

given € > 0 we can find 8 > 0 which works &niform[yfor all points of My . |

Note 3. A continuous function f : M; — M, need not be uniformly continuous
on Ml ,

For example, f : R — R defined by f (x) = x> is continuous but
not uniformly continuous on R . '
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Solved problems

A

Probletg 1'. 'Prove that f [0,

| I] = R defined = is uni
conlinuo\ﬁé’on 0, 1]. | —iNer Hniformly

Solution. lete > be given. Let x,y €[0,1].
Then | f ()= fFO) = |- y?|= |x+ y| |x- y|
< 2|x-y| ( sincexs lland ys< 1)

Clx- vl Je=s|f)- fo)l<e.

“. f is uniformly continuous on 125 Lk

Problem 2. Prove that the function f:(0,1) = R defined by f (x) = & is
X

0ot uniformly continuous.

Solution. Let €> 0 be given. Suppose there exists & > 0 such that
[¥=yl<d3=|f@- fO)|<e.

Take x = y + %6. |

Clearly [x - y | = %6{ d.

L f@-fO) <.

1
- < €.
X

1
y
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Thia nequality cannot be foe for all e (0, 1) adies |
')

A Becomes mabitingily lavpe auy nnchisg 2000
(29 + &)y * et ily Banpe aa g apprinnchies 2e00

[ ot aniformly continuansg

Problem Y Proove that the fonction [ W« B defined by [ (v) = pip v s

uniformly continnong on i

Solution, Loty e 1 oand v =y

ST BRIy o= (o V) cos 2o wheae v s 2 < (hy mean value thearem)
|kin v - siny|= v ] |eons|
4.-4||. _r'(ullurhuﬁ#l«ﬁl)

Hence tor o piven e < O i we choose 6 = ¢, wo hinve

Iy — vl =) L) |= |ainy  ainy|= ¢

o) = sy i uniformly continnous on 1
Exercinon

. Determpine which of the following functions are uniloomly con
STHURIER

(0) /0 R+ R detined by (V) = Ay where k€7

H) R = R defined by { ()=«

1
(¢) f 101 = R o delined by f(0) =~ v

(d) R =R defined by [ (v) = cos v,
i

L -« A

(1) {010, 1] = R defined by [ (x) = Vi

. let /R =R and g. I O~ I Le two functions unilformly con
(inuons on K. Prove that {4 g i also uniformly continnous on K

(¢) 1 : (0, 1) -+ R delined by [ (v) =

3. 1x the product of uniformly continuous rohl valued functions again
uniformly continnous?
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4.4 DISCONTINUOUS FUNCTIONS ON R

In this sectinu we shall investigate the set of poits at which a given
function f : R — R 15 discontinuocus. For this purupose we introduce the
concept of the 1eft [iniit and the right litot of f () at x = a and classify the
types of discontinuities for real functions. Throughout this section we deal

with R with usual metnc,

Definition. A function f : R — R issaid to approacintoa limit/ as x tends

to @ if givene > 0 there exists 0> 0 suckh that

O<ix-al<d=[f(v)~ /< & and we writec lim [ () = /.

X —™ {
t should be carefully noted that the condition 0 < |x - a|< $
excludes the point ¥ = @ from consideration. Hence ithe definition of limit

emplioys only values of x in some interval (a- &6, a+ &) other than «.

$ " ! ’ . L A, . = . . ; - .
Honcz rae value of f{v) at x = @ ;s iminsterial and in fact to consider

iim f (x) the function f (x) need not even be defined at x = a . Fven if
X > a
f {a) is definred it 15 not necessa ry that i f () = f (a).

x —~a

When defining the limit of f(x) as x =+ a we consider the

vier af £ E it s :
behaviour of f (x) at points which are neartoa and these points can be either

s Tafs » . t 1
totaeieitnta ortothe rightof a . However it is often necessary to know the

1 e | :
oehaviourof f {x) a5 x — a insuchawav th
Oor less than a.

f{x) at x= a.

atx always remains greater than
This leads us to the concept of right and left limits of

Definition. A function f isthatto have ! as the rightlimitat x = g if given

e > 0 thereexists 8 > 0 such thata < x < a+ 0= |f(x)-
write lim f (x)= /.

[l< & and we

Also we denote the right limit / by f (a +).
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CHAPTER 5

. CONNECTEDNESS,
5.0 INTRODUCTION ll

[N R considerthe subsets A = [1,2] andB = [1,2] U [3, 4]. The.

wiA consists of a single ‘picce’ whereas B consists of ‘two pieces’. We say

that A 18 a connected set and 8 18 not a connected set. This intuitive 1dca IS

made precwe m the following definition.

5.1 DEFINITION AND EXAMPLES

Detinition. Let (M, d) be a metric space. M is said 1o be connected if M

~cannot be represented as the union of two disjoint non-empty open sets.

If M is not connected it is sa 1d 10 be disconnected.

Example 1. Let M = |1, 2] U |3, 4] with usual metric. Then M is discon-

ected.

Proof. |1, 2] and |3, 4] are open in M. (refer example 2 in 2. D)

Thus M is the union of two disjoint non-empty open sets na mely
|1, 2] and |3, 4].

Hence M s disconnected. \

Example 2. Any discrete metrc space M with more than one point is
disconnected.

Proof. Let A be a proper non-empty subset of M. Smca M has more than

one poml such a set exists. wﬁfé
Then A® isalso non-cmpty. | |

&
&QMO‘N OQg
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. A 2nd AT are open

Thus M= A UA" where A and A are two disjoint non-empty
open seis.

. M 1s not connecled.

Theorem 5.1 Let {M.d) be a2 metric space. Then the following are
(1) 3 1s connacled.

(ii} M cznnot be written as the union of two disjoint non-empty closed
SCis.

(iif) % cannot be written as thg union of two non-empty sets A and
B sochithat ANB=ANE= . ?ﬁc\*gwf"‘ﬁ ’\t\
(iv) M and D zre 1h2 onlv seis which are both open‘*&nd closed in M-
Proof. (1) = (ii; = e
Suppose (i) is noci true. o
. M=A_UB where A and B areclosedA=® B=®d and ANB= P.
. A°= B and B = A.
Since 4 2né B are closed, A° and B are open.
. B and A are open.
Thus M 35 tke union of rwo disjoint non-empty open sets.
. M 1s not conunecied which is a contradiction.’
(1) = (ii)
Gi) = (ii).
Suppose (iii) is not true.

Then M= AUB where A=D. B=®d andANB=ANB= &.
We claimthat A and B are closed.

Let xS A.

g
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€ N gsnmvlr‘lﬂ-hm
VEA (LU LU 8- )
e

But A G 4.

4« 4 and heme A i chead
ﬁm!ht‘h F s \"l\'\\*{"d.

Now 4 Y8 = AN E @iy A = 1)

Thus W= 4 U S whw 4D Red A and 8§ are closed apd
4N Ee @ which k2 contmdecton o ()
o = il
(i) = @\
Suppasc (1v) & not iTud,

Then there exists A G M such that A = M and A =@ and A s

et B= 4

Then B s also hoth open and ckosed and 5 = @

Also M= 4 US.

Further A Y18 = 4 NAY (since 4= 4 and &= A%)
= Q.

Similatlv A N B = .

- M= AUE where ANB= @ = 4N B3 whichis a contradiction to (iii).

i) = Qv
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##.-\1{: -~ - ‘-I--r-r-d_i;

s o gl

Gv) = ().
Suppose M s not CURRECIEL
. M=AUB Where 4 » D AR

A 200 Bxseonensad A7 E = >
Then B = 4.

Now, since B i OpeL A 1 Civsed.
Also Ax D and A « M (incz B =Py
. A IS 3 proper Bon-=tropty suoset of M wiakd i bolk voen 28
closed which is 4 coniradic 100 10 {iv).
(v} = (i)

The following theorem gives zaother TYNINREET L Ra e TR A e
for connectedness.

~

Theorem 52 A mertric space M n connecied 111 (Bere doer mof exGat i
continuous function f from M ontc 1he discrets smetric spaer 7. 1

-
‘..l‘

Proof. Suppose there exists 2 cortinuous fanation J from M oxse 25, 1.

Since {0, 1} isdiscrete, {0 and 71, 3re opern
. iy ¢ i | p
S A= ({0})) and B= F° 1711, are open in M.
Since f 1sonto, A snd £ ure DD WPty
Clearly ANB= dand A'UEB= M.
Thus M= A UB where A and B ar= é?rsjf;.‘:?m LOR-CINPAY OPER ICh.
M 1s nol connected which s 2z comtadiction

_ Hence there does not exist 2 contisuons foncon from oot the
discrete metric space {0,1;.

Conversely, suppose M s nut connecied.

Then there exist disjoint pon-erapty openseis A and B mm M sech
that M= A U B.

-
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Now, define f : M~ 16,1} by f (= |7 £EA
; b it s € p
Clearly { is ontn. '
- :{ - q.. E x; =9 i— 2
Also f~ UDj= D, f UG 5= A, f 0 1yy= B and £ (10 [§)= M.
Thus the inverse image of cvery opensetin {0, 1y is open in M.

Hence f is continunus. (refer thenrem 4.2 1,

Thus there exisis 2 wontinunus function f from M ot (0, 14
’ ’ ; . ¥ i
which is 4 contradiction. Hence M is connected.

Note. The above thearem can e restated as folless

M 15 connected iff ever) continusus function f : M — [0, 1} is
not onio.

Solved problems

Problem 1. Let M be 2 metric space. 1A be 3 connected subrnet of M.

I8 15asubsetof M suchthatA C BT A then B is conneted. In panticular
A 1S connected.

Solution. Suppose B 1s noi connected

1hen E = Bi ' BZ HWhHere BI #’bisz#qi,gl rigzﬂ PV and

E: and B, areopeninkE .

Now, since B, and B, arc open sets in B there exist open sels |
GE a[ﬂ Gz lﬂM SUCh f.hﬁ:B} = GI rFB 3ﬂd 32"’: Gzrlﬁ.

S. D= B; 'J Bz = (Gl (1 ,B} tJ (62 ('} E} = (Gl (J ij‘) M B.
i BQG} UGZ‘
~ AC G UG, (since AT B).
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w (5 AV A
Mo, GO amd G 00 A ape apen in A
Farther (G VA VG VA w (0 V) VA
~ (el v (alnee AN
w (CF) V)V (0d 0 1)
- N0V,

-

(7 f'\/\)fl(h’r;ll/\)-— i
Now, since A ja conned ted, cathe (';” (YA = D ot (/,_ (YA = (I,

Without Toss ol penerabity fet ua answmine tht G (VA = (i
since Grisapenin M, we have (/ (VA = 1D,

Xy (VI = b (ndiver M A)
Ty = D whithiaa caontindiction

I i covnneoted,

ll"l‘ﬂhli@ Z;, A and 11 are conmected subsets of wometdhe spiee Moownd i
AV »= ']', I‘IIIHH* thint A L) 11 15 C O« Lol

Solation, Tet f A VL =10 1) e n continvows funtion.
Since A OV » D owe enn choone . A4,

Lot f (v )= (),

smnee [CAUN = {0, 1) i continwoun [ |4 A = {0, 1) in ulso

continmuoun,

But A s conneoeted,

Hence [ not onto, ( by theorem 572 )
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. f(x)= OforalleA or f(x)= 1 forallx €EA.

But f (x,)= 0 and x, EA -

. f(x)= 0forallx EA.

Similarly f (x) = 0 for all x € B.

. f(x)= Oforallx AU B.

Thus any continuous function f:AUB— {0, 1} is notonto.

. ALIB 18 connected.

Exercises

1. Provetha: {0,1} isnota connected subset of R with discrete metric.
2. Let {A_} beafamily of connected subsets of a metric space M such

|
# that N A, = $. Then prove thatA = U A, isa connected subset of M.

3. Let Aq; A9, ceeanes . Tpp——— be connected subsets of a metric space
Iﬂ . '

4. Let M be a metric space and let x, €M . Let C be ihe union of all
- connected subsets of M which contains the point x_,. Show that C 1s a
oonnected subset of M and is the largest connected subset of M which

contains the point x_. (C is called the component of the point x ) ).

S. Prove that the set of all components of a metric space M forms a

v

1 partition of M.

6. Prove that in a discrete metric space each component consists of a

4 single point.
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5.2 CONNECTED SUBSETS OF R

e o)
Theorem 5.3 A subs ' ted iff ;
q\ g ubspace of R is connecied 1f{ 1t is an interval.

Proof. Let A be a connected subset of R .

Suppose A is not an interval.

h

Then there exist g, 0,c ER suchthatg< b < ¢ anda,cE€A buthb& 4.

I..et 4‘11 = (" ¢, b)ﬂA andvA2= (b, Oﬂ)ﬁA

Since (- =, b) and (b, %) are open in R, A; and A, are open sets in A.

Also A NA,= O and A UA, =

e 1 -

Further a S A, and c EA,.

Hence Ay =D and A, = D.

Thus A is the union of two disjoint non-empty open sets A; and A,.

Hence A is'not connected which is a contradiction.

Hence A is aninterval.

#__—-l-

Conversely, Iest A be an interval.

We claim that A is connected.
Suppose A is not connected.

letA=A;UA, where A; =P, A, =P, A NA,= ® and A,

‘and A, are closed sets inA.
Choose x €EA; and z € A,.
Since A N A, = ® we have x = Z.

"’ Without loss of generality we assume thatx < z.

Now, since A is an interval we have [x,z] & A.
(i.ﬁ.) [x, Z] __C_Al UA2

.. Every element of [x, z] is either in A{ orinA,.
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‘
-
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IIIII

€4, (Sinee A- i dosad) (<)
| L FEA;NAL [y (D) and () ] which i & contmdiction sinee

Al nAﬁ e (Il'

Hence A is connectad.

| Theorem 5.4 R 1 connected.

r Proof. R= (- =, =) is sn intenval.

S XIS connected.

Solved problems.

Problem 1. Give an exa mple to show that a subspace of a connected metric
space need not be connected.

Solution. We know that R is connected.
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A= [1,2] U |3, 4] isasubspace of R which is not connected.

(referexample 1 of 5.1).

Problem 2. Prove ordisporve if A and C are connected subsers of a metric
space M and ifA C BC C, rhen B 1s comnected.

Solution. We disporve this statement by giving a counter example.

Let A= [1,2); B=[1,2]U({3,4]); C= R.

Clearly AC B C C.

Here A and € are connected. But B 1s not connected.

Exercises

1. Prove that any connected subset of R containing more than one point

IS uncountable. ( Hint. Any interval containing more than one point is

unc‘oumablc).

2. Give an example 1o show that union of two connected sets need not

be connected.

3. Determine which of the following are connected subsets of R.

(1) (a, b) (1) (a, ] (@) [a, b] (iv) [a, b)
(V) [4,6] U [8, 10} (vi) [4,6]U [S5,7] (vii) [4,6]N[S5, 7]
(vii) [4,6] 0 [5,7] (%) {0) (%) (0, =) (xi) (= =, 0)
(x11) Q (xi11) Z (xiv) R - {0}.

D o3 CC}ENECTEDNESS AND CONTINUITY

Theoren 5.§i Let M| be a connected metric space. Let M, be any metric

space. Let f : My — M, be a continuous function. Then f (M;) is a con-
necled subset of M,
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(1) AN oty e & comnared 0ef- 15-SaRacnd,

ool Lot f (M) = L sothat /o e fuenon (rom My onte A,
We vlaim that 4 as vonneciend,

Suppored wuetvengected. Then there exasis a proper non-empty
subset & of A whieh s both opent atd closed A

o "\b‘l 1% proper ao-ompdy subwetof W, which s both open
and closed in M) Henoe M not conaected whineh i & contradction.
Hewee A s connected,
Theorvm &3\ Let £ obe g real valued conttnueus tunctron defined on an

mterval 10 Then £ owkes CVery Value between any twa values it aASSumMmes.

( Thus s Know as the intermediate value theorem).

.-"h-.____ -

ool Lot v, &€ and ot FLe) = F ().
Without loss of geaeaality we sssume that £ (@) < 1 OM
Let e bo such that £ (@) < ¢ < £ (B
The mterval { s & connected subset of R,
S P WD) g conneted subset of R, ( by theorem 3.3
SO P s anaterval, by thevrem S.3) |
Also f (@), f(b) € F (D). Henee (7 & F O] C F (N
SCE D [sinee £ (@) < ¢« &)
Vo= F() focsome v E 7

Solved problem

Problem 1. Prove that it [ 2 non-constant real

vilued continuvous functon
on R then the moge of £ is uacvuntable.

Selution. We know that R N Connected
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Since f is a continuous function on R, f (R) is a conne

| ‘ Ccled subset of
S F(R) is aninterval in R. )

Also, s T
- SINCE 7 1S @ non-constant function the interval. f(R)

contains more than orne point.
" 1 (R) is uncountable. (1¢) The range of f is uncountable.

EXxercises

1. Prove thatif f : R — R is a continuous function which ASSUMES only

rational values then f is a constant function. ( Hint. Use intermediate value

theorem )

« ¢ 2 Py . . h
2. Prove that A = {{x,y)/x" +y“ = 1} is a connected subset of R ~.
| Hint: Consider f: [0, 27} = A given by f (x) = (cos x . sin x).
Revision questions on chapter 5

Determine which of the following statements are true and which are
false.

1. R 1s connected.
2. Q 1is connecied.

3. A subspace of a connected space is connected.

4. If A and 3 arc connected subsets of a metric space M then
A U B is counnected.

5. If A and B are connected subsets of M and AN B =P then |
A U B i1s connectcd.

6. Any discrete metric space having more than one point 1s discon- i
nected. |

7. 1f M is a metric space and x € M then {x} is a connected subset of M. i

8. A subset of a discrete metric space is connected iff it is a singleton °

9. Continuous image of a connected set 1s connected.

Answers. 1. 5,6, 7, 8and 9 are true.

Scanned by TapScanner



o ——

=

COMPACTNES
N0

6.0 INTRODUCTION UNLT - 9 Vo ( \NE‘(’\

- We have seen that the concept of completeness is the abstraction
of a property of the real number system. The conceptof compactness is also
in abstraction of an important property possessed by subsets of R which are
‘losed and bounded. This property is known as Heine Borel theorem which
tates ihat if /& R is a closed interval, any family of open intervals in R
vhose union contains / has a finite subfamily whose union contains 1. We

10w Introduce the class of compact merric spaces 1n which the conclusion
f Heine Borel theorem is valid.

>.1 COMPACT METRIC SPACES
Jefinition. Let M be a metric space. A family of open sets {G} inM is
alled an open cover for M if U G, = M.

A subfamily of {G,} which itself is an open cover is called a |

ubcover.

A metric space M is said to be compact if every open cover for
1 has finite subcover.

(i.e) for each family of opensets {G,} such that U G, = M, there

Xist a finite subfamily {Gm1 , Gm2 —— , Gan} such that | G“f = M.‘

_ t= 1

.xample 1@ with usual metric is not compact.

roof. Consider the family of open intervals { (= n, n)/n € N}. - m o

This 1s a family of open sets in R.

fuey fimte T "

1 ¢
f (omfre <
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Clearlv U (=n,n) = R.

m= ]

s {(=n,n)/n € N} is anopen cover for R and this open cover has
“ no finite subcover.

. R 1s not compact.

Example 2. (0, 1) with usual metric is not compact.

Proof. Consider the family of open intervals {‘L—E ; 1)/!1 = 2 3, }
Clearly U

Ae _

(i,1)= 0, 1).

2 4'& ; 1]/:1 = 2,3, ... } 1s an open cover for (0, 1) and this open

cover has no finite subcover.
Hence (0, 1) is not compact.
Example 3. [0, =) with usual metric is not compacit.

Proof. Consider the family of intervals {[0, n)/n & N}.
[0, ) is open in |0, ) for each n € N.

Also CJ [0, n) = [0, ).

nm )

" {[0, n)/n € N} is an open cover for [0, ) and this open cover
has no finite subcover.

Hence [0, =) is not compact.

Example 4. Let M be an infinite set with discrete metric. Then

M 1s not
compactL

Proof. Letx € M. Since M is a discrete metric Space {x} is open in M.
Also U {x} = M.

xEM
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COMPACT METRIC SPACES 153

Hence {{x}/x € M} is an open cOver for M and since M ;g
infinite, this open cover has no finite Subcover.

Hence M is not compact.
Example 5. We will prove in 6.2 that aniy closed interval [a, b] With usua
metric is compact.

Theorem 6.1 Let M be a metric space. LetA & M. A is compact iff given
a family of open sets {G4} inM such that U G, 2 A there exists a subfamily

Ga,» Co,s weeeees , Co such that 'U1 Gal__D_A_

Proof. LetA be a compact subset of M.
et {G,} bea family of open sets inM such that U G DA

Then (U G,) NA = A.

UG, NA)=A
AlsoG,NA isopeninA . (referthcorem 2.6)
. The family {G, M A} is an open cover for A.

Since A is compact this open cover has a [inite subcover, say,
Gy NA, G, NA, ..., G, NA.
1 s T

U (Go, NA) = A

1= 1

/ n w
U G, |NA= A

U"‘ )

UGEQA

1= 1

Conversely let {H_} be an open cover for A.

e

. Each H, isopeninA.
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a 15S0penin M.

Hence by hypothesis there exists a finite subfamily

G“: ; Gﬂ: R , G, such that | Gﬂ.- DA

= 1]

Thus {Hﬂ.l : Hm;3 p— ; H“n} 1s a finite subover of the open cover {H,}.
. A 1s compact.

Theorem 6.2 Any compact subset A of a mectric space M is bounded.

Proof. Let x_ € A.
Consider {B(x_,, n)/n € N}.

Clearly U B(x,,n)= M.

n= |

:, C) B(x,,n) 2A. | :

nw= 1

Since A is compact there exists a finite subfamily say,
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. k
B(x,,ny), Blx,,n), .. , B(x, , ;) suchthat U B(xy ny) 2A.

[ - ]

Let n,= max{ny, ny, ...., n.}.

k
Then U B(x,,n;) = B(x,, ng).

1= ]
S B(x,,n))2A.
We know that B(x, , n,) is a bounded set and a subset of a bounded
set is bounded. Hence A is bounded. |

Note. The converse of the above theorem is not true.

For example, (0, 1) is a bounded subset of R.

But it is not compact. (refer example 2 of 6.1)

-
Theorem@i}ﬂmy compact subset A of a metric space (M, d) is closed.

- Proof. To prove thatA is closed we shall prove that A€ is open.
Let y EAC and let x EA. Then x = y.
Jo X, y) = r > O

It can be easily verified that B(x, % r.) M B(y, 71,- r,) = P.
‘Now consider the collection {B(x, % r/X€A).

1
Clearly U B(x, - r,) =2 A.

x €EA

- Since A is compact there exists a {finite number of such open balls say,

. B(x;, % rxl) RIS . & - -;— rxn) such that U B(x;, -]2- rx) D A.

1= ]
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Now, let V,, = (1 By, 5r,).

[ u |

Clearly V,, Is an open set conlaining y.

_ 1
Since B(y 1r,) (VB(x, 3r,) = @, we have V, N B(x, 3r) =  for

cach 15 1, 2, soers I

e

n | L )
) Vyﬂ L) B(A,-zrx'_ D,

{= | )

V,AA= @ [by(1)].

v, CA”

C . D e
L V,= A" andcach V, is open.
yEA

|
i

. A° is open. Hence A is closed.

Note 1. The converse of the above theorem is not true.
Far example, [0, «) is a closed subset of R. But it is not compact
(refereg. 30l6.1)

Note 2. It follows from theorems 6.2 and 6.3 that any compact subset of a

metric space is closed and bounded.

'I"hmrem*ﬁd\ﬁa closed subspace of a compact metric space is compact,
o

Proof. LetM be acompact melric space. LetA beanon-empty closed subset

of M.
We claim that A 18 compacl.

Let {G, /o €1} be afamily of open sets in M such that

UG, 2A.
acl
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. ACUTUGHHHMt

a €]

Also A® is open. (since A is closed ).
S AG,/a €N U {A%)} is an open cover for M.

Since M js compact it has a finite subcover cay

« (Oon) s

= ]
\

% UG DA

~. A 1s compactL

Exercises

1. Give an example of an open cover which kas ne finite subcover for

the following subsets of R.
@) (5,6) (i) (5,%) (i) [5,%) (iv) [7,9)

2. Show that everv finite metnc space 1s compact.

3. Give an example of a connected subset of R which is not compact.
(Hint. Any interval in R is connected) |

4. A and B are two compact subsets of a metric space M. Prove that

A U B i1s also compaclt.

6.2 COMPACT SUBSETS OF R.

We have already proved that every compact subset o{a metricspace
is closed and bounded.
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However the converse s not true.

Oor ex |
'.II . . 1 4 . L] w ol L
F ample, consider an infinite discrete metric space (M d).

- LetA beaqn imfinite subsct of M

Then A is bounded sinced(x,y)< 1 forallx,yE A.

l S0 A is closed since any subsct of a discrete metric space is
closed. |

Hence A is closed and bounded.
However A is not compact ( refer example 4 of 6.1))

In this section we shall prove that for R with usual metric the
converse 1s also true.

Theorem @]Heinc Borel theorem)

Any closed interval a, b] ts a compact subset of R.

Proof. Let {G /o €& I} be a family of open sets in R such that

U Gy =2 |a,b].

a €l

LetS = {x/x a, b] and [a, x] can be covered by a finite number ofG, 's.
Clearly a € S and hence S = .
Also § is bounded above by b.

. A
Let ¢ denote the I. u. b. of S. :f'il‘

? ":-,f_-{;,-
Clearly ¢ € [a, b]. 0 N

. CE Gul forsomea; €1. '}

Since G, 1s open, there exists € > 0 such that

(c-gc+ e)&Cq .
Choose x; € [a, b] suchthatx; < ¢ and [x1, €] & Gg -

' I ' ber of G ’s.
Now, since x; < ¢, [a, x;] can be covered by a finite num o
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These finite number of Go’s together with Gul covers [a, c].

By definition of S £=35

———

= —

Now, we claim lha( C = b} Q.U ‘\9
Suppose ¢ = b, \‘/—

Then choose x, € [a, b] suchthatx, > ¢ and ¢, x,]C G, .

1

As before, [a, x;] can be covered by a finite number of (xS,

Hence x, € §.
But X9 > ¢ which is a contradiction,

" C= b,
= |a, b]

since ¢ is the /. u. b. of 3.

can be covered by a finite number of K Sy
. |a, b] is a compact subset of R.

Theorem 6.6 A subset A of R is compact iff A is closed and bounded.

Proof. IfA is compact then A is closed and bounded.
Conversely. let A be subset of R which is closed and bounded.

‘Since A 1s bounded we can find a closed interval [aq, b] such that
A C [a, b].

.

Since A isclosed in R, A is closed in [a, b] also.
Thus A is a closed subset of the compact space [a, b].

Hence A is compact. ( by theorem 6.4 ) |

- Exercises

| 1. Determine which of the following subset of R are comapct.
CG) Z (i) Q (i) [1,2]
(av) (3,4) - (v) (0, =) (va) |1, 2] WJ 13, 4]
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e .. i ] 1
(V”) [],'3](1[5,4] ("’””) {l:r}.- 3.1""};;;* """ J
- s 4 1 1
i} 10, 155 3 ceve s 2y

2. WA and I are compact subsets of 1 prove that A OV )3 s sl

a compact subset of K.

6.3 EQUIVALENT CHARACTERISATIONS FOR COMPACT NESS

In this section we oblain several equjvalent chayacterisation fop

compaciness i a melric sniace,

Definition. A family 3 of subsets of 2 set M js said 1) have the fipits

intersection property if any finite members of 73 have pon-eppty jnte e o

(Example. In R the family of closed intervals 3 = {|~ n niy/n <Ny has

finite intersection property.

Theorem 6.7 A metic space M is compact iff any family of closed sots ity

[inite intersection property has non-<mpty intersection.
P'roof. Suppose M 1s compact.

Let {A,} beafamily of closed subsets of M with finite inteyseotion
property.

We claim that NA,, = D.

Suppose (MA, = D then (MA,) = D,

UA, = M.
Also, since cach A, is closed, A;, is open.
C s .
" {Ay) 18 an open cover for M.

Since M is compact this open cover has a finite subcover say,
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A€, A °, .. 7 W
UAi=M
1= ]

(n €
NA;| =M

n
~ M A;= ® which is a contradiction to the finite intersectiop

1= ]

property.
* MNA, = D.

Conversely, suppose that each family of closed sets in M whh finite

intersection property has non empty intersection.

To prove that M is compact, let {G_,/a €I} be an open cover for M.

= U GU.= M-
acl
[
(U Ga] = M. .
a€]J |
~ NG =
a€/

Since G, is open, G, is closed for each a.

" = {Gg/a €1} isafamily of closed sets whose intersection
1S empty.-

Hence by hypothesis this faﬁlily of closed sets does not have the
finite intersection property.

e

Hence there exists a finite sub-collection of say,

{G]; G5, G,} suchthat N\ G{ = .

= ]
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COMPACITNESS
- C
U G| = @
I
i= 1
{G1, G, ... » G, } is a finite subcover of the given open

cover,
Hence M is compact.

*-:‘ .- _ . . .
Vefinition. A metnc space M is said to be totally bounded if for every

e

€ > 0 there exists a finite number of elements x, x5, ...... , X,, € M such that

B(xy, ) U B(x,, €) U ......U B(x,, £) = M.

A non-empty subset A of a metnc space M is said to be totally

vounded if the subspace A is a totallv bounded metric space.

Theorem 6.8 Any compact metric space is totally bounded.

Proof. Let M bea compact metric space.
Then {B(x, €)/x € M} is an open cover for M.

Since M is compact this open cover has a finite subcover say,
B(x, , €), DX L B ) v e . ).

S M= B(xy, €) U B(x, €) U ..... U (B(x,, €).
. M 1is 1otally bounded.

Theorem 6.9 Let A be a subset of a metric space M. If A is totally bounded
then 4 1s bounded.

Proof. Let A be a totally bounded subset of M. Lete > O be given.

i

|

Then there exists a finite number of points x4, x5, ..... , X,, €E A, such

that B(xy,€) UB{(x5,e)U ... U By(x,, €) = A, where B(x;, €) is an opea j

ball 1n A.
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EQUIVALENT CH ARECTERISATIONS

Further we know that an open ball is a bounded set.

Thus 4 is the uruon of a

[initec number of bounded sets and hence
A 1 bounded.

Note. The converse of the above theorem is not true.

For, let M be aninfinite set with discrete metnc.
Clearly M is bounded.

low. Bix 1) o
Now, B(x, 2) {x}.

numbder of open balls B(x, -_1;) .

. M 1s not totally bounded.

Definitdon. Let (X,,) be sequence in a metric space M .
Let m, < YR vy ML s be an increasing sequence of positive in-

egers. Then (Iﬂg) 1S called 2 subsequenc:: of (x,).

e

Theorem %.10 A metnc space (M, d)

is totally bounded iff EVery sequence
in M bas a2 Cauchy subsequence.

Proof. Suppaose CVEry scquence in M has a Cauchy subsequence.
We claim that M s totally bounded.

Lzt e> 0 be given. Choose Xy =M.

IfB(x{,€)= M then obviously M is totally bounded.

If B(x,;, €) = M, choose X, EM - B(xy, €) so that d(xy, x5) = .
Now if B(xy, ) U (Bx;, €)= M the proof is complete.

If not choose x5 = M - [B(xy,e) U B(x,, €)] and so on.

Suppose this process does not stop at a finite stage.
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Then we obtain @ Sequence Xy, Xy, . g ee—. such that

dA(x,, X)) = € il n=m
Clearly this sequence (xv,) cannot have a Cauchy subsequence
which 1s a contradiction.
Hence the above process stops at a finite stage and we get a finite
set of points {xy, X, uee , X, } such that
M = B(xy, &) U B(x,, e) L) .o U B(x,, ¢).
M is totally bounded.

Converselv suppose M is totally bounded.
Let Sy = {¥; o Xj 5 seew Kz seassaes } be a sequence in M.

If one term of the sequence is infinitely repeated then S, contains
a constant subsequence which is obviouslv a Cauchy subscquence.
Hence we assume that no term of Sy is infinitely repeated so that

the range of S is infinitc.
Now. since M is totally bounded M can be covered by a finite

: 1
number of open balls of radius .

Hence atleast one of these balls must contain an infinite number of

terms of the sequence S;.

- §; contains a subsequence Sy = (X3 , X2, e . e g

- n

e '. 1
terms of which lie within an open ball of radius 5.

Similarly S, contains a sub sequence Sy = (.r3l, vy T 5 s ) all

terms of which lie within an open ball of radius -:13‘-

We repeat this process of forming successive subsequences and

finally we take the diagonal sequence.
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We claim that § is a Cauchy subsequence of 5

If m> n both x, and x, lic withinan open ball of radjus LY

et L4
L

i 2
Hence d(xmm Xy )< € il n,m> =

F

This shows that § is a Cauchy subsequence of &
Thus every sequence in M contains a Canchy subsequence.

Corollary. A non-empty subset of a totally bounded set in lotally bounded

Proof. LetA be a totally bounded subset of a metric space M,
Let B be a non-empty subset of A. ,

Let (x,) be a sequence in B.
(x,) is a scquence in A.
Since A is totally bounded (x,) has a Cauchy subscquence.

Thus every sequence in B has a Cauchy subsequence.

. B is totally bounded.

Definition. A metric space M is said to be sequentially tomlmcl il every

‘sequence in M has a convergent sub-sequence.

Theorem 6.11. et (x,,) be a Cauchy soquence in a metric Space M | If

X a '
(x,,) has a subsequence (x,,*) converging tox , then (x,) converges to x.

Proof. Let € > 0 be given. Since (x,) is a Cauchy sequence, there exists a

positive intecger m, such that d(x,, x,) < —;15 forallm,re= my ..... (1)
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Let m, = max {m,, m>} and fi

Then dx,,x) < d(x

X sz ma.

n? xnk) 6 d(.xn* s ..r)'

<

to | m

E
t 3 lorall nzm, [by(1)and(2)]

= € for all n> m,.

Hence (x ) — x..

Theorem 6.12 Ina metric space M the following are equivalent.
(i) M is compact.

(i) Any infinite subset of M has a limit point.
(iii) M is sequentially compact. 1

(iv) M 1s totally bounded and complete. |

Proof. (i) = (ii)
Let A be an infinite subset of M.

Suppose A has no limit point in M.
Lt x EM.

Since x is not a limit point of A there eXists an open ball B(x,r,)
such that B(x, r,) N (A - {x})= ].

{x}il xEA
d if xEA |

Now, {B(x, r )/x € M} is open cover for M.

& Bl r ) LA S {

Also each B(x , r,) covers atmost one point of the infinite setA. ‘

. . - l
Hence this open cover cannot have a finite sub cover which 1s

contradiction to (i). Hence A has atleast on¢ limit point.
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’

(i) => (iii).
Let (x,) be a sSequence in M.

[fone term of the requence v infinitely repe

| wedthen (x,) containg
4 constant subsequence whic

hoas CoOnvergent,

Otherwise (x

) has an Infinite number of (e,

By hypothesis this infin
CSIS thas infinite se ‘ ‘ |
aet has a binvke poImt, sny x.

By thcorem 2.15 fo any ros ()

the open ball H(x, r
| | . | contingn
infinite number " .

of terms of the Scquence (x,)
Fi

Then choose . - I
O5C My > n; such llmlx”_) & Blx, 5):

In general for each Positive integer & choose n, such that

N> ng ¢ and Xy, € B(x, %) : | :
Clearly (x"t) 1S a subsequence of (x,,).
|
Also d(x"k, X) < T

(x,,k) e

Thus (x"k) IS @ convergent subsequence of (x,,)-
Hence M is sequentially compacit.
(iii) => (iv).

By hypothesis every sequence in M has a convergent

subsequence. But every convergent scquence 1s a Cauchy sequence.
Thus every sequence in M has a Cauchy subsequence.

By theorem 6.10, M is to!2]ly bounded.
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Now we prove that M 1z complele.

Let (x_} be 2 Cauchy sequence in M.
Bv hypotbesis (x,j oonlains 2 convergent subsequence (xn*) ,
Let (x,;—=x. <s3¥)
Then by theorem 6.11 . ix_ )} — x.
M 1s compliete.
(iv) = (D)

Suppose M s not compacL
Then there exdsts an openoover <G for M which has no finite subcover.

[ et r,:=—*--
IE

Since. M is totally bounced. M can be covered by a finite number
of open balls of radius 7.

Since M canmot be covered by a fintte numberof G "5 atieast ome

of these open balls, sav Bix, . r.

-

; <amnoi be covered by a finite number of

Cr. %

Now, Bix..r,} is wotally bounded.

Hence 2s before we cac Sx< x-» € B(xy ,74) such that B(x,, r,)
cannot be coversd by a2 finite somber2f G, ’s.

Proceeding like this we obtain a2 sequence (x,} in M such tha
B(x, ,r,) caanot be coversd by a finite number of G °s and
.+ 1 EBx_,7.) foralin
NOW, ﬁK.I‘.,I"’:J = df_;l':l > S :;, - d’rxg- c1 X Pt —F d‘i“'u-ﬁ-;—l . I.l-i-_-?)

-li' -* —
{rﬂ' rﬂ-—-}* A rg-p_:
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l +
-} e & l iiiiiiiiiiii
*
I S A T N
2n - 1 {2 22
1 P
‘: 2" rxas 1

. (x,) is a Cauchy scquence in M.

169

Since M is complete there exists x € M such that (x,)) — x.

Now, x € G, forsome .

Since G; is open we can find € > 0 such that B(x, €) & G,,.

We have (x,) — x and (r,) = (i—;] — 0.

Hence we can find a positive integer 7; such thatd(x,_ , x) < —,1’- 3

1
and - EE foralln > n.

’NOW, fixn2z Mq-

We claym that B(x, , r

) C B(x, €).

n

Let yeBix, . 1)
Y Ay, X,) € r, < -_l;e (since nz nq)

Now, d(y,x) < d(y, x,) + d(x,_, x)

1 1
< —E+ —€ = E.
2 2

Ly Blx, 2).
“ Bx,,r)SBkx,e)&S G, (by(1))
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Thus B(x, )

15 COVered b 1

dicti . red by the single seq which it 2
iction since B3 ¥ b it 4
conltra (x, , r,)

Cannot be coy 3 i k ., & .
| covered by a finite number of U,y 8. ‘
Hence Mg Compact

Theorem 6.13. KR ‘with usya] MEINC is complete

- Proof. Let (x,) be a Cauchy Scquence in R

Then(x,) is 2 beo

» 4 unded s . *

n ¢d sequence and hence is contained in 2 closed
interval |a, b].

Now, [a, b]| is Compact and hence j

y = il

5 complete,

Hence (x,) converges to somne point x € [a bl

Thus every Cauchy sequence (x,) in R converges 10 some point
x in R and hence R s complete.

Solved problems

Problem 1. Give an cxample of a closed and bounded subset of !.2 which 15

notcompacit.

Solution. Consider 0 = (0,0, 0,

Consider the closed ball B[O, 1].
Clearly, B[O, 1] 1s bounded.

Also, B[O, 1] 1s a closed set.

We claim that B[O , 1] 1s not compact. 1
Consider e; = (1,0,0,....);e;,= (0,1,0, ..... | R i
e,= (0,0,0, ... , 1,0, .....) g

Now, d(0,¢_ )= 1 and hence ¢, € B[O, 1] for all n.

Thus (¢,) is a sequence in B[O, 1].
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Also d(e, e, )= V2 il nem.

Hence the sequence (e, ) docs not contwin a Cauchy subsequence,
HIO 1] i not totally bounded,
H{O, 1) s not compact, /
ohlem 2. Prove that any totally bounded metric space in scpurable,

lution. Let M be a totally bounded metric space.

?‘ 1 ' * -
For each natural number n let A, = {,l"!  Xpgy v vees s x"*) be @

A

bact of M such that | J H(r"i' :') - M. csnva (1)
TR
let A= ) A, .

now |

Since ench A, s finite, A 18 a countable subset of M.

We claim that A is dense in M.

Let B(x, £) be any open ball,

- I
Choose a natural number n such that — <« L.

n
Now, x € H(_r"'f , :;) for some 1. (by (1)).
d(x"_ X)) % “:; < L.

(x"i) & B(x, ¢).

" Bx,e) NA wd,

Thus cvery open ball in M has non-cmpty intersection with A.
lence by theorem 2.17, A is dense in M.

Thus A 1s a countable dense subset of M.

Hence M s separable.
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Problem 3. Prove that any bounded sequence in R has a convergent suly-

sequence.

Seiution. Let (x,) be a bounded sequence in R.

Then there exists a closed interval [a, b] such thatx, € [a, b] for all n.

Thus (x,) is a sequence in the compact metric space [a, b].

Hence by theorem 6.12, (x,,) has a convergent sub-sequence.
Problem 4. Prove that the closure of a totally bounded set is totally bounded.

Selution. Let 4 be a totally bounded subset of a metric space M.

We claim that A is totally bounded.

We shall show that every sequence in A contains a Cauchy
subsequence.

Let (x,) be a sequence inA .

Lete> 0 be given.

Then since x, EA , 8(x, —i— £) VA = D,
Choose y, € B(x, , -;— g) MNA,

S L

2

1
;

—

Not -, (y,) Is a sequence in A. Since A is totally bounded (y,)

contains 2 Cauchyv sequence say (vnk).

—

Hence there exists a natural number 7 such that

d(_vn_ y 3 4 ? }

¥, ) < Le forallm,,nmoz2m  ..... (2)

cod(x, x,) s dx, ¥a) + A ye) + Ay X,)
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D |t

" %E_‘_ 31_5.*. e= ¢ forallm;,n; = m.'(by(l)and(z))

Hence (‘r”;) is a Cauchy subsequence of (x,,).

. A is totally bounded.

Problem @‘LctA be a totally bounded subset of R. Prove th_atf_{ 1S éompact_

Solution. Since A 1s fotal!y bounded A is also totally bounded.

Also, since A is a closed subsetof R and R 1s completc A is complete.

( refer theorem 3.4)

Hence A is totally bounded and complete.

. A is compact. ( refer theorem 6.12)

SR N R —

Exercises

1. Let M be a complete metric space. Prove thit a closed subset A of
M is compact iff A is totally bounded.

2. Give an example of a complete metric space.which is not compact.

3. Prove that a connected subset of a discrete metric space M is

compact. (Hint. Any connected subset of M is a singleton set.)
4. Prove that a compact metric space is separable.
5. Prove that any bounded infinite subset of R has a limit point.

6. Prove thatany Cauchy sequence in a metric space is totally bounded.

(Hint: Use theorem 6.10 )
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In this '
. Seclion we PIOVE some results about continuous
cittied on g3 compact metric space.

Corresponding results

closed interval [a, b].

functions
These are generalizations of the
for continuous real valued functions defined on any

o

( Lét f be a continuous mapping from a compact metric space
M to any metric space M, . Then f(M,) is compact.

(i.e.,) C ontinuous image of a compact metric space is compact.

. R

Proof. Without loss of generality we assume l.hat f(Ml) = M,.

Let {G,} be a family of open sets in M, suchthat UG, = M, .
- UG, = (M)

. UGy = M,
U UGy = My

Also since f is continuous f 1(G,m) 1s open in M, for each a.
. 51 .
s Af (Gy) } is an open cover for M;.

Since M, is compact this open cover has a finite subcover, say,

. f I(Gal) Uf NGg)U e UF 1(Gy) = My,

X i I(UI Gq, ]= M.

U Go= f(My) = M,.
im 1 |
G,

is a cover for M,.
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Fhitin Wb o sopeni cocved {04, ) e M, bins a Finite subeover,

A’f! Jis 4 Paddipint i

Copollary VoL ad | e ai rand ety fringe Fateten it it ineleie sprace ﬂ”l into

alyy anetiie M, T hea [IM ) b o loaed g bl
ool JOM ) dn e mipae bl e e e ¢ leme st and boindedd

URTTRN T y Lo Ay contingiins peal vl B Ve f e Fined onoa Chmpnct

it i dspaad £ 0o Vitiiopde il a i) atbalng Mg Vil

Poonk, TarM Ve acampne dane bl apimn s

Lot [ M+ M i g comtinnons real valued fune tion,
Fhe o [ (M) dua v onnpact subaet of K

JOM) da w o laged and bissanded subeet of B
S e [OM) s boinaded [ oda a boanded Fungtion.

Flovw, Wovae = 1w ool [IM) andd b~ 20 b of f(M).
Ity adebinianalb T ow b andd p L booa, b & HM)

Fsut [AM) s ¢ dased Heme [(M) = I(M)
i, It (M)
There vaist o, y € M auchthal f(x) = a and f(y) = b,

Flegue o aitnins its bonnds

Note, ( arallinry (7) s nob trae il M ds nob compaet,
T he function [ (0, 1) = W defined by f(x) = 1/x s continuous

bisid ot sl baiinnele vl

The function g (0, 1) = B defined by g (x) =x is boundcd

having 1w b= 1 andy | L= 0 However this lunction never attains these

Londs at nny point in (O, 1)
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Theorem 6.15. Any conunuous mapping f defined on a compact metric

space (M, . d,) into any other metric space (M, , d,) is uniforily continuous

on .‘{1 ;

Proof. Lete> 0 be given. Letx € M,.

Since f is continuous at x thcre exists 0, > 0 such that

di(y,x) < 8, =dy (fO), fX)) < 6. ..... (1)

Now, the family of open balls {B(x ,%61.)/.1' S M,} is an open

cover for M,.

Since M is compact this open cover bas 2 finite subcover sayv

) L 1
' ]. 1 Y
Let 3= min {‘:'(Sx ""”‘?‘-‘Gr }
i 1 - n

We claim that d(p,g) < 0= d, (f(p), 1(q) ) < &.

et pEB(x;,.- &, ) forsome: where 13 i< n.

g dl(f_’ “ "T;) < ; OI_;‘

(LY £ o 1 P
S a3 {fp). Fix))< ¢ (by (1)) .Y e 1

Now, d,(q, x;) = dy(q.p) + d; (p, X))

< 0+ %15_1._
< %6-‘;+ %6xl_= 6_,_.5.
Thus d; (q, x;) < O,
L dy(f(@. Fx)) < 3 (bYy () ... (3)
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“".H',\".".“ ‘x“h‘. \‘\:&.‘{ “ \ :".\ l‘.'-.__\h'q, \ Hii\ : : ﬁ--\ 1 ‘; .:l'

NOv L2, AN s L AE Sa VN = &g, fig))

. &

L]
-

e - ; oa i Hl—l- - 3 o
{ D Ly &N S~ Qo= Lo P * \_‘}‘_‘.- < %

..

This proves that # m pmilormdy Sontnecys on My

Note. The abowve (hovrem s m e 1f Mo s st cominac,

.

We bave seen that of £ w2 coalnnoes heacdon thep ¢ 1 neod

nol D¢ Continuous. Now wye sha!l POOVE TRE! D Y R & OOnnuouns dijechon

b

defined on 3 CoOmpatt M ne PG, IR T N BINS Sondnuoas,

Theorem 0.16 Lo ¢ des 1- L oostinuons fumedor Snors g WTPACT metnc
< .

SpPace U, onio any melng space M- T2 5 7 s &OrTsrons on M. Hence
7o g homeomophsm from W, onte M-

Proof. We shall shew that 7 5w coatncons B pEoVIng (hat

Fisaclsedsetm M, = ™ V" " (Flm < is 3 Sosed se in M-
Let & Be a closed set ia M.
Snce My s compact Fon compect. (™ thacrem a4
Since f m contnuwous FiF) s QOTIPECT subset a7 M.

S0 PUEY s 3 closed subset of W

]

S B contimeows on W e

Solved problems

Problem 1. Prove that the mnge of 3 comtinvous real \ahed function f om

3 Compact Connecivd mMemnc space W mus: be eithers ungie point or a closed
and bounded 1nrenval

e
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